From Zero to Hero: Harnessing Transformers for Biomedical Named Entity Recognition in Zero- and Few-shot Contexts
- URL: http://arxiv.org/abs/2305.04928v5
- Date: Sun, 25 Aug 2024 06:22:00 GMT
- Title: From Zero to Hero: Harnessing Transformers for Biomedical Named Entity Recognition in Zero- and Few-shot Contexts
- Authors: Miloš Košprdić, Nikola Prodanović, Adela Ljajić, Bojana Bašaragin, Nikola Milošević,
- Abstract summary: This paper proposes a method for zero- and few-shot NER in the biomedical domain.
We have achieved average F1 scores of 35.44% for zero-shot NER, 50.10% for one-shot NER, 69.94% for 10-shot NER, and 79.51% for 100-shot NER on 9 diverse evaluated biomedical entities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Supervised named entity recognition (NER) in the biomedical domain depends on large sets of annotated texts with the given named entities. The creation of such datasets can be time-consuming and expensive, while extraction of new entities requires additional annotation tasks and retraining the model. To address these challenges, this paper proposes a method for zero- and few-shot NER in the biomedical domain. The method is based on transforming the task of multi-class token classification into binary token classification and pre-training on a large amount of datasets and biomedical entities, which allow the model to learn semantic relations between the given and potentially novel named entity labels. We have achieved average F1 scores of 35.44% for zero-shot NER, 50.10% for one-shot NER, 69.94% for 10-shot NER, and 79.51% for 100-shot NER on 9 diverse evaluated biomedical entities with fine-tuned PubMedBERT-based model. The results demonstrate the effectiveness of the proposed method for recognizing new biomedical entities with no or limited number of examples, outperforming previous transformer-based methods, and being comparable to GPT3-based models using models with over 1000 times fewer parameters. We make models and developed code publicly available.
Related papers
- Augmenting Biomedical Named Entity Recognition with General-domain Resources [47.24727904076347]
Training a neural network-based biomedical named entity recognition (BioNER) model usually requires extensive and costly human annotations.
We propose GERBERA, a simple-yet-effective method that utilized a general-domain NER dataset for training.
We systematically evaluated GERBERA on five datasets of eight entity types, collectively consisting of 81,410 instances.
arXiv Detail & Related papers (2024-06-15T15:28:02Z) - Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
This paper proposes a hybrid approach that integrates the strengths of multiple models.
BERT provides contextualized word embeddings, a pre-trained multi-channel CNN for character-level information capture, and following by a BiLSTM + CRF for sequence labelling and modelling dependencies between the words in the text.
We evaluate our model on the benchmark i2b2/2010 dataset, achieving an F1-score of 90.11.
arXiv Detail & Related papers (2023-12-24T21:45:36Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
We propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon.
The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module.
Our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities.
arXiv Detail & Related papers (2022-11-09T09:23:56Z) - Recognising Biomedical Names: Challenges and Solutions [9.51284672475743]
We propose a transition-based NER model which can recognise discontinuous mentions.
We also develop a cost-effective approach that nominates the suitable pre-training data.
Our contributions have obvious practical implications, especially when new biomedical applications are needed.
arXiv Detail & Related papers (2021-06-23T08:20:13Z) - Fast and Effective Biomedical Entity Linking Using a Dual Encoder [48.86736921025866]
We propose a BERT-based dual encoder model that resolves multiple mentions in a document in one shot.
We show that our proposed model is multiple times faster than existing BERT-based models while being competitive in accuracy for biomedical entity linking.
arXiv Detail & Related papers (2021-03-08T19:32:28Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - A Lightweight Neural Model for Biomedical Entity Linking [1.8047694351309205]
We propose a lightweight neural method for biomedical entity linking.
Our method uses a simple alignment layer with attention mechanisms to capture the variations between mention and entity names.
Our model is competitive with previous work on standard evaluation benchmarks.
arXiv Detail & Related papers (2020-12-16T10:34:37Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - The Utility of General Domain Transfer Learning for Medical Language
Tasks [1.5459429010135775]
The purpose of this study is to analyze the efficacy of transfer learning techniques and transformer-based models as applied to medical natural language processing (NLP) tasks.
General text transfer learning may be a viable technique to generate state-of-the-art results within medical NLP tasks on radiological corpora.
arXiv Detail & Related papers (2020-02-16T20:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.