Integration of Programmable Diffraction with Digital Neural Networks
- URL: http://arxiv.org/abs/2406.10688v1
- Date: Sat, 15 Jun 2024 16:49:53 GMT
- Title: Integration of Programmable Diffraction with Digital Neural Networks
- Authors: Md Sadman Sakib Rahman, Aydogan Ozcan,
- Abstract summary: Recently advances in deep learning and digital neural networks have led to efforts to establish diffractive processors that are jointly optimized with digital neural networks serving as their back-end.
This article highlights the utility of this exciting collaboration between engineered and programmed diffraction and digital neural networks for a diverse range of applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical imaging and sensing systems based on diffractive elements have seen massive advances over the last several decades. Earlier generations of diffractive optical processors were, in general, designed to deliver information to an independent system that was separately optimized, primarily driven by human vision or perception. With the recent advances in deep learning and digital neural networks, there have been efforts to establish diffractive processors that are jointly optimized with digital neural networks serving as their back-end. These jointly optimized hybrid (optical+digital) processors establish a new "diffractive language" between input electromagnetic waves that carry analog information and neural networks that process the digitized information at the back-end, providing the best of both worlds. Such hybrid designs can process spatially and temporally coherent, partially coherent, or incoherent input waves, providing universal coverage for any spatially varying set of point spread functions that can be optimized for a given task, executed in collaboration with digital neural networks. In this article, we highlight the utility of this exciting collaboration between engineered and programmed diffraction and digital neural networks for a diverse range of applications. We survey some of the major innovations enabled by the push-pull relationship between analog wave processing and digital neural networks, also covering the significant benefits that could be reaped through the synergy between these two complementary paradigms.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Metasurface-generated large and arbitrary analog convolution kernels for accelerated machine vision [10.201372470332501]
We develop a spatial frequency domain training method to create arbitrarily shaped analog convolution kernels.
We experimentally demonstrate a 98.59% classification accuracy on the MNIST dataset, with simulations showing 92.63% and 68.67% accuracy.
This work underscores the unique advantage of analog optical convolution, offering a promising avenue to accelerate machine vision tasks.
arXiv Detail & Related papers (2024-09-27T10:24:19Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications.
We describe advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient SNNs.
We discuss the potential path forward for research in building deployable SNN systems.
arXiv Detail & Related papers (2023-12-02T19:47:00Z) - Spatially Varying Nanophotonic Neural Networks [39.1303097259564]
Photonic processors that execute operations using photons instead of electrons promise to enable optical neural networks with ultra-low latency and power consumption.
Existing optical neural networks, limited by the underlying network designs, have achieved image recognition accuracy far below that of state-of-the-art electronic neural networks.
arXiv Detail & Related papers (2023-08-07T08:48:46Z) - Experimentally realized in situ backpropagation for deep learning in
nanophotonic neural networks [0.7627023515997987]
We design mass-manufacturable silicon photonic neural networks that cascade our custom designed "photonic mesh" accelerator.
We demonstrate in situ backpropagation for the first time to solve classification tasks.
Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
arXiv Detail & Related papers (2022-05-17T17:13:50Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Scale-, shift- and rotation-invariant diffractive optical networks [0.0]
Diffractive Deep Neural Networks (D2NNs) harness light-matter interaction over a series of trainable surfaces to compute a desired statistical inference task.
Here, we demonstrate a new training strategy for diffractive networks that introduces input object translation, rotation and/or scaling during the training phase.
This training strategy successfully guides the evolution of the diffractive optical network design towards a solution that is scale-, shift- and rotation-invariant.
arXiv Detail & Related papers (2020-10-24T02:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.