Metasurface-generated large and arbitrary analog convolution kernels for accelerated machine vision
- URL: http://arxiv.org/abs/2409.18614v1
- Date: Fri, 27 Sep 2024 10:24:19 GMT
- Title: Metasurface-generated large and arbitrary analog convolution kernels for accelerated machine vision
- Authors: Ruiqi Liang, Shuai Wang, Yiying Dong, Liu Li, Ying Kuang, Bohan Zhang, Yuanmu Yang,
- Abstract summary: We develop a spatial frequency domain training method to create arbitrarily shaped analog convolution kernels.
We experimentally demonstrate a 98.59% classification accuracy on the MNIST dataset, with simulations showing 92.63% and 68.67% accuracy.
This work underscores the unique advantage of analog optical convolution, offering a promising avenue to accelerate machine vision tasks.
- Score: 10.201372470332501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving field of artificial intelligence, convolutional neural networks are essential for tackling complex challenges such as machine vision and medical diagnosis. Recently, to address the challenges in processing speed and power consumption of conventional digital convolution operations, many optical components have been suggested to replace the digital convolution layer in the neural network, accelerating various machine vision tasks. Nonetheless, the analog nature of the optical convolution kernel has not been fully explored. Here, we develop a spatial frequency domain training method to create arbitrarily shaped analog convolution kernels using an optical metasurface as the convolution layer, with its receptive field largely surpassing digital convolution kernels. By employing spatial multiplexing, the multiple parallel convolution kernels with both positive and negative weights are generated under the incoherent illumination condition. We experimentally demonstrate a 98.59% classification accuracy on the MNIST dataset, with simulations showing 92.63% and 68.67% accuracy on the Fashion-MNIST and CIFAR-10 datasets with additional digital layers. This work underscores the unique advantage of analog optical convolution, offering a promising avenue to accelerate machine vision tasks, especially in edge devices.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Integration of Programmable Diffraction with Digital Neural Networks [0.0]
Recently advances in deep learning and digital neural networks have led to efforts to establish diffractive processors that are jointly optimized with digital neural networks serving as their back-end.
This article highlights the utility of this exciting collaboration between engineered and programmed diffraction and digital neural networks for a diverse range of applications.
arXiv Detail & Related papers (2024-06-15T16:49:53Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - Integrated multi-operand optical neurons for scalable and
hardware-efficient deep learning [10.157562103034]
This work proposes a scalable and efficient optical dot-product engine based on customized multi-operand photonic devices.
We experimentally demonstrate the utility of a MOON using a multi-operand-Mach-Zehnder-interferometer (MOMZI) in image recognition tasks.
arXiv Detail & Related papers (2023-05-31T06:25:39Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Experimentally realized in situ backpropagation for deep learning in
nanophotonic neural networks [0.7627023515997987]
We design mass-manufacturable silicon photonic neural networks that cascade our custom designed "photonic mesh" accelerator.
We demonstrate in situ backpropagation for the first time to solve classification tasks.
Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
arXiv Detail & Related papers (2022-05-17T17:13:50Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
We present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs.
We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator.
arXiv Detail & Related papers (2021-05-08T03:50:45Z) - Scale-, shift- and rotation-invariant diffractive optical networks [0.0]
Diffractive Deep Neural Networks (D2NNs) harness light-matter interaction over a series of trainable surfaces to compute a desired statistical inference task.
Here, we demonstrate a new training strategy for diffractive networks that introduces input object translation, rotation and/or scaling during the training phase.
This training strategy successfully guides the evolution of the diffractive optical network design towards a solution that is scale-, shift- and rotation-invariant.
arXiv Detail & Related papers (2020-10-24T02:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.