Spuriousness-Aware Meta-Learning for Learning Robust Classifiers
- URL: http://arxiv.org/abs/2406.10742v1
- Date: Sat, 15 Jun 2024 21:41:25 GMT
- Title: Spuriousness-Aware Meta-Learning for Learning Robust Classifiers
- Authors: Guangtao Zheng, Wenqian Ye, Aidong Zhang,
- Abstract summary: Spurious correlations are brittle associations between certain attributes of inputs and target variables.
Deep image classifiers often leverage them for predictions, leading to poor generalization on the data where the correlations do not hold.
Mitigating the impact of spurious correlations is crucial towards robust model generalization, but it often requires annotations of the spurious correlations in data.
- Score: 26.544938760265136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spurious correlations are brittle associations between certain attributes of inputs and target variables, such as the correlation between an image background and an object class. Deep image classifiers often leverage them for predictions, leading to poor generalization on the data where the correlations do not hold. Mitigating the impact of spurious correlations is crucial towards robust model generalization, but it often requires annotations of the spurious correlations in data -- a strong assumption in practice. In this paper, we propose a novel learning framework based on meta-learning, termed SPUME -- SPUriousness-aware MEta-learning, to train an image classifier to be robust to spurious correlations. We design the framework to iteratively detect and mitigate the spurious correlations that the classifier excessively relies on for predictions. To achieve this, we first propose to utilize a pre-trained vision-language model to extract text-format attributes from images. These attributes enable us to curate data with various class-attribute correlations, and we formulate a novel metric to measure the degree of these correlations' spuriousness. Then, to mitigate the reliance on spurious correlations, we propose a meta-learning strategy in which the support (training) sets and query (test) sets in tasks are curated with different spurious correlations that have high degrees of spuriousness. By meta-training the classifier on these spuriousness-aware meta-learning tasks, our classifier can learn to be invariant to the spurious correlations. We demonstrate that our method is robust to spurious correlations without knowing them a priori and achieves the best on five benchmark datasets with different robustness measures.
Related papers
- Towards Robust Text Classification: Mitigating Spurious Correlations with Causal Learning [2.7813683000222653]
We propose the Causally Calibrated Robust ( CCR) to reduce models' reliance on spurious correlations.
CCR integrates a causal feature selection method based on counterfactual reasoning, along with an inverse propensity weighting (IPW) loss function.
We show that CCR state-of-the-art performance among methods without group labels, and in some cases, it can compete with the models that utilize group labels.
arXiv Detail & Related papers (2024-11-01T21:29:07Z) - Out of spuriousity: Improving robustness to spurious correlations without group annotations [2.592470112714595]
We propose an approach to extract a subnetwork from a fully trained network that does not rely on spurious correlations.
The increase in the worst-group performance of our approach contributes to strengthening the hypothesis that there exists a subnetwork in a fully trained dense network.
arXiv Detail & Related papers (2024-07-20T20:24:14Z) - Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration [60.95748658638956]
This paper introduces the Multi-Label Confidence task, aiming to provide well-calibrated confidence scores in multi-label scenarios.
Existing single-label calibration methods fail to account for category correlations, which are crucial for addressing semantic confusion.
We propose the Dynamic Correlation Learning and Regularization algorithm, which leverages multi-grained semantic correlations to better model semantic confusion.
arXiv Detail & Related papers (2024-07-09T13:26:21Z) - Learning Robust Classifiers with Self-Guided Spurious Correlation Mitigation [26.544938760265136]
Deep neural classifiers rely on spurious correlations between spurious attributes of inputs and targets to make predictions.
We propose a self-guided spurious correlation mitigation framework.
We show that training the classifier to distinguish different prediction behaviors reduces its reliance on spurious correlations without knowing them a priori.
arXiv Detail & Related papers (2024-05-06T17:12:21Z) - Identifying Spurious Correlations using Counterfactual Alignment [5.782952470371709]
Models driven by spurious correlations often yield poor generalization performance.
We propose the counterfactual (CF) alignment method to detect and quantify spurious correlations.
arXiv Detail & Related papers (2023-12-01T20:16:02Z) - Understanding and Mitigating Spurious Correlations in Text
Classification with Neighborhood Analysis [69.07674653828565]
Machine learning models have a tendency to leverage spurious correlations that exist in the training set but may not hold true in general circumstances.
In this paper, we examine the implications of spurious correlations through a novel perspective called neighborhood analysis.
We propose a family of regularization methods, NFL (doN't Forget your Language) to mitigate spurious correlations in text classification.
arXiv Detail & Related papers (2023-05-23T03:55:50Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot semantic segmentation is the task of learning to locate each pixel of a novel class in a query image with only a few annotated support images.
We propose a Feature-Enhanced Context-Aware Network (FECANet) to suppress the matching noise caused by inter-class local similarity.
In addition, we propose a novel correlation reconstruction module that encodes extra correspondence relations between foreground and background and multi-scale context semantic features.
arXiv Detail & Related papers (2023-01-19T16:31:13Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Learning Causal Models Online [103.87959747047158]
Predictive models can rely on spurious correlations in the data for making predictions.
One solution for achieving strong generalization is to incorporate causal structures in the models.
We propose an online algorithm that continually detects and removes spurious features.
arXiv Detail & Related papers (2020-06-12T20:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.