Evidential Uncertainty Sets in Deep Classifiers Using Conformal Prediction
- URL: http://arxiv.org/abs/2406.10787v3
- Date: Tue, 30 Jul 2024 04:00:44 GMT
- Title: Evidential Uncertainty Sets in Deep Classifiers Using Conformal Prediction
- Authors: Hamed Karimi, Reza Samavi,
- Abstract summary: We propose Evidential Conformal Prediction (ECP) method for image classifiers to generate conformal prediction sets.
Our method is based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL)
- Score: 1.2430809884830318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose Evidential Conformal Prediction (ECP) method for image classifiers to generate the conformal prediction sets. Our method is designed based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL) as a method of quantifying model (epistemic) uncertainty in DNN classifiers. We use evidence that are derived from the logit values of target labels to compute the components of our non-conformity score function: the heuristic notion of uncertainty in CP, uncertainty surprisal, and expected utility. Our extensive experimental evaluation demonstrates that ECP outperforms three state-of-the-art methods for generating CP sets, in terms of their set sizes and adaptivity while maintaining the coverage of true labels.
Related papers
- Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Spatial-Aware Conformal Prediction for Trustworthy Hyperspectral Image Classification [39.71307720326761]
Hyperspectral image (HSI) classification involves assigning unique labels to each pixel to identify various land cover categories.
Deep classifiers have achieved high predictive accuracy in this field, but they lack the ability to quantify confidence in their predictions.
We introduce Spatial-Aware Conformal Prediction (textttSACP), a conformal prediction framework specifically designed for HSI data.
arXiv Detail & Related papers (2024-09-02T13:11:38Z) - Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - Adapting Conformal Prediction to Distribution Shifts Without Labels [16.478151550456804]
Conformal prediction (CP) enables machine learning models to output prediction sets with guaranteed coverage rate.
Our goal is to improve the quality of CP-generated prediction sets using only unlabeled data from the test domain.
This is achieved by two new methods called ECP and EACP, that adjust the score function in CP according to the base model's uncertainty on the unlabeled test data.
arXiv Detail & Related papers (2024-06-03T15:16:02Z) - Conformal Predictions for Probabilistically Robust Scalable Machine Learning Classification [1.757077789361314]
Conformal predictions make it possible to define reliable and robust learning algorithms.
They are essentially a method for evaluating whether an algorithm is good enough to be used in practice.
This paper defines a reliable learning framework for classification from the very beginning of its design.
arXiv Detail & Related papers (2024-03-15T14:59:24Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification.
Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples.
This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions.
arXiv Detail & Related papers (2023-12-25T20:02:51Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Learning Optimal Conformal Classifiers [32.68483191509137]
Conformal prediction (CP) is used to predict confidence sets containing the true class with a user-specified probability.
This paper explores strategies to differentiate through CP during training with the goal of training model with the conformal wrapper end-to-end.
We show that conformal training (ConfTr) outperforms state-of-the-art CP methods for classification by reducing the average confidence set size.
arXiv Detail & Related papers (2021-10-18T11:25:33Z) - Re-Assessing the "Classify and Count" Quantification Method [88.60021378715636]
"Classify and Count" (CC) is often a biased estimator.
Previous works have failed to use properly optimised versions of CC.
We argue that, while still inferior to some cutting-edge methods, they deliver near-state-of-the-art accuracy.
arXiv Detail & Related papers (2020-11-04T21:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.