Trustworthy Classification through Rank-Based Conformal Prediction Sets
- URL: http://arxiv.org/abs/2407.04407v1
- Date: Fri, 5 Jul 2024 10:43:41 GMT
- Title: Trustworthy Classification through Rank-Based Conformal Prediction Sets
- Authors: Rui Luo, Zhixin Zhou,
- Abstract summary: We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
- Score: 9.559062601251464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning classification tasks often benefit from predicting a set of possible labels with confidence scores to capture uncertainty. However, existing methods struggle with the high-dimensional nature of the data and the lack of well-calibrated probabilities from modern classification models. We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models that predict the order of labels correctly, even if not well-calibrated. Our approach constructs prediction sets that achieve the desired coverage rate while managing their size. We provide a theoretical analysis of the expected size of the conformal prediction sets based on the rank distribution of the underlying classifier. Through extensive experiments, we demonstrate that our method outperforms existing techniques on various datasets, providing reliable uncertainty quantification. Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation. This work advances the practical deployment of machine learning systems by enabling reliable uncertainty quantification.
Related papers
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
Conformal prediction is a powerful framework for constructing prediction sets with valid coverage guarantees.
We propose a novel approach that combines multiple score functions to improve the performance of conformal predictors.
arXiv Detail & Related papers (2024-07-14T14:58:03Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Conformal Predictions for Probabilistically Robust Scalable Machine Learning Classification [1.757077789361314]
Conformal predictions make it possible to define reliable and robust learning algorithms.
They are essentially a method for evaluating whether an algorithm is good enough to be used in practice.
This paper defines a reliable learning framework for classification from the very beginning of its design.
arXiv Detail & Related papers (2024-03-15T14:59:24Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - From Classification Accuracy to Proper Scoring Rules: Elicitability of
Probabilistic Top List Predictions [0.0]
I propose a novel type of prediction in classification, which bridges the gap between single-class predictions and predictive distributions.
The proposed evaluation metrics are based on symmetric proper scoring rules and admit comparison of various types of predictions.
arXiv Detail & Related papers (2023-01-27T15:55:01Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.