Self-Evolution Fine-Tuning for Policy Optimization
- URL: http://arxiv.org/abs/2406.10813v1
- Date: Sun, 16 Jun 2024 06:38:02 GMT
- Title: Self-Evolution Fine-Tuning for Policy Optimization
- Authors: Ruijun Chen, Jiehao Liang, Shiping Gao, Fanqi Wan, Xiaojun Quan,
- Abstract summary: We introduce self-evolution fine-tuning (SEFT) for policy optimization.
SEFT eliminates the need for annotated samples while retaining the stability and efficiency of supervised fine-tuning.
One of the prominent features of this method is its ability to leverage unlimited amounts of unannotated data for policy optimization.
- Score: 22.629113943131294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The alignment of large language models (LLMs) is crucial not only for unlocking their potential in specific tasks but also for ensuring that responses meet human expectations and adhere to safety and ethical principles. Current alignment methodologies face considerable challenges. For instance, supervised fine-tuning (SFT) requires extensive, high-quality annotated samples, while reinforcement learning from human feedback (RLHF) is complex and often unstable. In this paper, we introduce self-evolution fine-tuning (SEFT) for policy optimization, with the aim of eliminating the need for annotated samples while retaining the stability and efficiency of SFT. SEFT first trains an adaptive reviser to elevate low-quality responses while maintaining high-quality ones. The reviser then gradually guides the policy's optimization by fine-tuning it with enhanced responses. One of the prominent features of this method is its ability to leverage unlimited amounts of unannotated data for policy optimization through supervised fine-tuning. Our experiments on AlpacaEval 2.0 and MT-Bench demonstrate the effectiveness of SEFT. We also provide a comprehensive analysis of its advantages over existing alignment techniques.
Related papers
- Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
We present a unified theoretical framework bridgingSupervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training.<n>We propose a simple yet effective learning rate reduction approach that yields significant performance improvements.
arXiv Detail & Related papers (2025-06-15T05:42:29Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models [14.68920095399595]
sparsity-based PEFT (SPEFT) introduces trainable sparse adaptations to the weight matrices in the model.<n>We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies.<n>We compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance.
arXiv Detail & Related papers (2024-12-18T04:14:35Z) - Direct Preference Optimization Using Sparse Feature-Level Constraints [47.15096507230884]
Feature-level constrained Preference Optimization is a novel method designed to simplify the alignment process while ensuring stability.
Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence.
arXiv Detail & Related papers (2024-11-12T07:54:13Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
We propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO)
RosePO better aligns with customized human values during the post-training stage.
Evaluation on three real-world datasets demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2024-10-16T12:54:34Z) - Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization [67.8738082040299]
Self-Sampling Preference Optimization (SSPO) is a new alignment method for post-training reinforcement learning.<n>SSPO eliminates the need for paired data and reward models while retaining the training stability of SFT.<n>SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
arXiv Detail & Related papers (2024-10-07T17:56:53Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
We introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO)
VPO regularizes the maximum-likelihood estimate of the reward function with the corresponding value function.
Experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
arXiv Detail & Related papers (2024-05-29T17:51:42Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment [105.34140537748546]
We propose an improved alignment approach named FIGA. Different from prior methods, we incorporate fine-grained quality signals that are derived by contrasting good and bad responses.
Our approach has made two major contributions. Firstly, we curate a refined alignment dataset that pairs initial responses and the corresponding revised ones.
Secondly, we devise a new loss function can leverage fine-grained quality signals to instruct the learning of LLMs for alignment.
arXiv Detail & Related papers (2023-11-07T15:36:40Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Constrained Variational Policy Optimization for Safe Reinforcement
Learning [40.38842532850959]
Safe reinforcement learning aims to learn policies that satisfy certain constraints before deploying to safety-critical applications.
primal-dual as a prevalent constrained optimization framework suffers from instability issues and lacks optimality guarantees.
This paper overcomes the issues from a novel probabilistic inference perspective and proposes an Expectation-Maximization style approach to learn safe policy.
arXiv Detail & Related papers (2022-01-28T04:24:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.