Algorithm Selection for Optimal Multi-Agent Path Finding via Graph Embedding
- URL: http://arxiv.org/abs/2406.10827v1
- Date: Sun, 16 Jun 2024 07:41:58 GMT
- Title: Algorithm Selection for Optimal Multi-Agent Path Finding via Graph Embedding
- Authors: Carmel Shabalin, Omri Kaduri, Roni Stern,
- Abstract summary: Multi-agent path finding (MAPF) is the problem of finding paths for multiple agents such that they do not collide.
Finding optimal solutions to MAPF is NP-Hard, yet modern optimal solvers can scale to hundreds of agents and even thousands in some cases.
We show how this encoding can be effectively joined with existing encodings, resulting in a novel AS method we call MAPF Algorithm selection via Graph embedding.
- Score: 9.831879504969224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent path finding (MAPF) is the problem of finding paths for multiple agents such that they do not collide. This problem manifests in numerous real-world applications such as controlling transportation robots in automated warehouses, moving characters in video games, and coordinating self-driving cars in intersections. Finding optimal solutions to MAPF is NP-Hard, yet modern optimal solvers can scale to hundreds of agents and even thousands in some cases. Different solvers employ different approaches, and there is no single state-of-the-art approach for all problems. Furthermore, there are no clear, provable, guidelines for choosing when each optimal MAPF solver to use. Prior work employed Algorithm Selection (AS) techniques to learn such guidelines from past data. A major challenge when employing AS for choosing an optimal MAPF algorithm is how to encode the given MAPF problem. Prior work either used hand-crafted features or an image representation of the problem. We explore graph-based encodings of the MAPF problem and show how they can be used on-the-fly with a modern graph embedding algorithm called FEATHER. Then, we show how this encoding can be effectively joined with existing encodings, resulting in a novel AS method we call MAPF Algorithm selection via Graph embedding (MAG). An extensive experimental evaluation of MAG on several MAPF algorithm selection tasks reveals that it is either on-par or significantly better than existing methods.
Related papers
- MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale [46.35418789518417]
Multi-agent pathfinding is a challenging computational problem that typically requires to find collision-free paths for multiple agents in a shared environment.
We have created a foundation model for the MAPF problems called MAPF-GPT.
Using imitation learning, we have trained a policy on a set of sub-optimal expert trajectories that can generate actions in conditions of partial observability.
We show that MAPF-GPT notably outperforms the current best-performing learnable-MAPF solvers on a diverse range of problem instances.
arXiv Detail & Related papers (2024-08-29T12:55:10Z) - Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding [13.296796764344169]
We present the first optimal any-angle multi-agent pathfinding algorithm.
Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP)
We adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints.
arXiv Detail & Related papers (2024-04-25T07:41:47Z) - Guidance Graph Optimization for Lifelong Multi-Agent Path Finding [47.51678151084153]
We study how to use guidance to improve the throughput of lifelong Multi-Agent Path Finding (MAPF)
We introduce the guidance graph as a versatile representation of guidance for lifelong MAPF.
We present two GGO algorithms to automatically generate guidance for arbitrary lifelong MAPF algorithms and maps.
arXiv Detail & Related papers (2024-02-02T14:38:04Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Traffic Flow Optimisation for Lifelong Multi-Agent Path Finding [29.76466191644455]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics that asks us to compute collision-free paths for a team of agents.
We propose a new approach for MAPF where agents are guided to their destination by following congestion-avoiding paths.
We evaluate the idea in two large-scale settings: one-shot MAPF, where each agent has a single destination, and lifelong MAPF, where agents are continuously assigned new destinations.
arXiv Detail & Related papers (2023-08-22T07:17:39Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
We introduce an original variant of Monte-Carlo Tree Search (MCTS) tailored to multi-agent pathfinding.
Specifically, we use individual paths to assist the agents with the the goal-reaching behavior.
We also use a dedicated decomposition technique to reduce the branching factor of the tree search procedure.
arXiv Detail & Related papers (2023-07-25T12:33:53Z) - LaCAM: Search-Based Algorithm for Quick Multi-Agent Pathfinding [5.025654873456756]
We propose a novel complete algorithm for multi-agent pathfinding (MAPF) called lazy constraints addition search for MAPF (LaCAM)
LaCAM uses a two-level search to find solutions quickly, even with hundreds of agents or more.
Our experiments reveal that LaCAM is comparable to or outperforms state-of-the-art sub-optimal MAPF algorithms in a variety of scenarios.
arXiv Detail & Related papers (2022-11-24T06:27:18Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - MAPFAST: A Deep Algorithm Selector for Multi Agent Path Finding using
Shortest Path Embeddings [6.223269541026908]
Solving the Multi-Agent Path Finding (MAPF) problem optimally is known to be NP-Hard for both make-span and total arrival time minimization.
There is no dominating optimal MAPF algorithm that works well in all types of problems and no standard guidelines for when to use which algorithm.
We develop the deep convolutional network MAPFAST, which takes a MAPF problem instance and attempts to select the fastest algorithm to use from a portfolio of algorithms.
arXiv Detail & Related papers (2021-02-24T18:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.