MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
- URL: http://arxiv.org/abs/2409.00134v3
- Date: Wed, 25 Sep 2024 13:09:35 GMT
- Title: MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
- Authors: Anton Andreychuk, Konstantin Yakovlev, Aleksandr Panov, Alexey Skrynnik,
- Abstract summary: Multi-agent pathfinding is a challenging computational problem that typically requires to find collision-free paths for multiple agents in a shared environment.
We have created a foundation model for the MAPF problems called MAPF-GPT.
Using imitation learning, we have trained a policy on a set of sub-optimal expert trajectories that can generate actions in conditions of partial observability.
We show that MAPF-GPT notably outperforms the current best-performing learnable-MAPF solvers on a diverse range of problem instances.
- Score: 46.35418789518417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent pathfinding (MAPF) is a challenging computational problem that typically requires to find collision-free paths for multiple agents in a shared environment. Solving MAPF optimally is NP-hard, yet efficient solutions are critical for numerous applications, including automated warehouses and transportation systems. Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning. Following current trends in machine learning, we have created a foundation model for the MAPF problems called MAPF-GPT. Using imitation learning, we have trained a policy on a set of pre-collected sub-optimal expert trajectories that can generate actions in conditions of partial observability without additional heuristics, reward functions, or communication with other agents. The resulting MAPF-GPT model demonstrates zero-shot learning abilities when solving the MAPF problem instances that were not present in the training dataset. We show that MAPF-GPT notably outperforms the current best-performing learnable-MAPF solvers on a diverse range of problem instances and is efficient in terms of computation (in the inference mode).
Related papers
- Algorithm Selection for Optimal Multi-Agent Path Finding via Graph Embedding [9.831879504969224]
Multi-agent path finding (MAPF) is the problem of finding paths for multiple agents such that they do not collide.
Finding optimal solutions to MAPF is NP-Hard, yet modern optimal solvers can scale to hundreds of agents and even thousands in some cases.
We show how this encoding can be effectively joined with existing encodings, resulting in a novel AS method we call MAPF Algorithm selection via Graph embedding.
arXiv Detail & Related papers (2024-06-16T07:41:58Z) - HiMAP: Learning Heuristics-Informed Policies for Large-Scale Multi-Agent
Pathfinding [16.36594480478895]
Heuristics-Informed Multi-Agent Pathfinding (HiMAP)
Heuristics-Informed Multi-Agent Pathfinding (HiMAP)
arXiv Detail & Related papers (2024-02-23T13:01:13Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Learning Team-Based Navigation: A Review of Deep Reinforcement Learning
Techniques for Multi-Agent Pathfinding [2.7898966850590625]
This review paper focuses on highlighting the integration of DRL-based approaches in MAPF.
We aim to bridge the current gap in evaluating MAPF solutions by addressing the lack of unified evaluation metrics.
Our paper discusses the potential of model-based DRL as a promising future direction and provides its required foundational understanding.
arXiv Detail & Related papers (2023-08-11T00:59:29Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
We show the lessons learned from past developments and current trends in the topic and discuss its wider impact.
Two major approaches to optimal MAPF solving include (1) dedicated search-based methods, which solve MAPF directly, and (2) compilation-based methods that reduce a MAPF instance to an instance in a different well established formalism.
arXiv Detail & Related papers (2021-04-23T20:13:12Z) - The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent Games [67.47961797770249]
Multi-Agent PPO (MAPPO) is a multi-agent PPO variant which adopts a centralized value function.
We show that MAPPO achieves performance comparable to the state-of-the-art in three popular multi-agent testbeds.
arXiv Detail & Related papers (2021-03-02T18:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.