論文の概要: TrafficBots V1.5: Traffic Simulation via Conditional VAEs and Transformers with Relative Pose Encoding
- arxiv url: http://arxiv.org/abs/2406.10898v1
- Date: Sun, 16 Jun 2024 11:20:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:12:13.968842
- Title: TrafficBots V1.5: Traffic Simulation via Conditional VAEs and Transformers with Relative Pose Encoding
- Title(参考訳): TrafficBots V1.5: 条件付きVAEと相対的なポースエンコーディングを備えたトランスフォーマーによるトラフィックシミュレーション
- Authors: Zhejun Zhang, Christos Sakaridis, Luc Van Gool,
- Abstract要約: TrafficBots V1.5は、トラフィックエージェントのクローズドループシミュレーションのベースライン手法である。
オープン・シム・エージェント・チャレンジ(WOSAC)2024で3位を獲得した。
- 参考スコア(独自算出の注目度): 59.339735703856924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this technical report we present TrafficBots V1.5, a baseline method for the closed-loop simulation of traffic agents. TrafficBots V1.5 achieves baseline-level performance and a 3rd place ranking in the Waymo Open Sim Agents Challenge (WOSAC) 2024. It is a simple baseline that combines TrafficBots, a CVAE-based multi-agent policy conditioned on each agent's individual destination and personality, and HPTR, the heterogeneous polyline transformer with relative pose encoding. To improve the performance on the WOSAC leaderboard, we apply scheduled teacher-forcing at the training time and we filter the sampled scenarios at the inference time. The code is available at https://github.com/zhejz/TrafficBotsV1.5.
- Abstract(参考訳): 本稿では,交通エージェントのクローズドループシミュレーションのためのベースライン手法であるTrafficBots V1.5を提案する。
TrafficBots V1.5はベースラインレベルのパフォーマンスを達成し、Waymo Open Sim Agents Challenge (WOSAC) 2024で3位を獲得した。
CVAEベースのマルチエージェントポリシーであるTrafficBotsと、異種ポリリントランスフォーマーであるHPTRと、相対的なポーズエンコーディングを組み合わせたシンプルなベースラインである。
We improve the performance on the WOSAC leaderboard, we applied scheduled teacher-forcing at the training time and we filtered scenarios at the inference time。
コードはhttps://github.com/zhejz/TrafficBotsV1.5で公開されている。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - LeTFuser: Light-weight End-to-end Transformer-Based Sensor Fusion for
Autonomous Driving with Multi-Task Learning [16.241116794114525]
本稿では,複数のRGB-Dカメラ表現を融合させるアルゴリズムであるLeTFuserを紹介する。
認識と制御を同時に行うためには,マルチタスク学習を利用する。
論文 参考訳(メタデータ) (2023-10-19T20:09:08Z) - Real-Time Motion Prediction via Heterogeneous Polyline Transformer with
Relative Pose Encoding [121.08841110022607]
既存のエージェント中心の手法は、公開ベンチマークで顕著な性能を示した。
K-nearest neighbor attention with relative pose encoding (KNARPE) は、トランスフォーマーがペアワイズ相対表現を使用できる新しいアテンション機構である。
エージェント間でコンテキストを共有し、変化しないコンテキストを再利用することで、私たちのアプローチはシーン中心のメソッドと同じくらい効率的になり、最先端のエージェント中心のメソッドと同等に実行されます。
論文 参考訳(メタデータ) (2023-10-19T17:59:01Z) - Multiverse Transformer: 1st Place Solution for Waymo Open Sim Agents
Challenge 2023 [3.4520774137890555]
本報告では,オープン・シム・エージェント・チャレンジ(WOSAC)2023における第1位のソリューションについて述べる。
提案するMultiVerse Transformer for Agent Simulation (MVTA)は,トランスフォーマーに基づく動作予測手法を効果的に活用する。
本研究では,高度なリアリズムを持つシミュレーションを作成するために,新しいトレーニング手法とサンプリング手法を設計する。
論文 参考訳(メタデータ) (2023-06-20T20:01:07Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - S2TNet: Spatio-Temporal Transformer Networks for Trajectory Prediction
in Autonomous Driving [7.862992905548721]
本稿では,S時間変換器による時空間相互作用をモデル化し,時空間変換器によるテンポレルシーケンスを扱うS2TNetを提案する。
この手法は、ApolloScape Trajectoryデータセットにおける最先端の手法を平均と最終変位誤差の重み付け和で7%以上上回る。
論文 参考訳(メタデータ) (2022-06-22T08:12:31Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - CARLA Real Traffic Scenarios -- novel training ground and benchmark for
autonomous driving [8.287331387095545]
本研究では,実世界のトラフィックに基づくCARLAシミュレータにおけるインタラクティブな交通シナリオについて紹介する。
我々は数秒間続く戦術的タスクに集中しており、これは現在の制御方法では特に困難である。
CARLA Real Traffic Scenarios(CRTS)は、自動運転システムのトレーニングとテストの場になることを意図しています。
論文 参考訳(メタデータ) (2020-12-16T13:20:39Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。