論文の概要: First-Order Manifold Data Augmentation for Regression Learning
- arxiv url: http://arxiv.org/abs/2406.10914v1
- Date: Sun, 16 Jun 2024 12:35:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:02:29.330052
- Title: First-Order Manifold Data Augmentation for Regression Learning
- Title(参考訳): 回帰学習のための1次マニフォールドデータ拡張
- Authors: Ilya Kaufman, Omri Azencot,
- Abstract要約: 我々は、新しいデータ駆動型ドメイン非依存データ拡張法であるFOMAを紹介する。
分布内一般化と分布外ベンチマークに基づいてFOMAを評価し,いくつかのニューラルアーキテクチャの一般化を改善することを示す。
- 参考スコア(独自算出の注目度): 4.910937238451485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation (DA) methods tailored to specific domains generate synthetic samples by applying transformations that are appropriate for the characteristics of the underlying data domain, such as rotations on images and time warping on time series data. In contrast, domain-independent approaches, e.g. mixup, are applicable to various data modalities, and as such they are general and versatile. While regularizing classification tasks via DA is a well-explored research topic, the effect of DA on regression problems received less attention. To bridge this gap, we study the problem of domain-independent augmentation for regression, and we introduce FOMA: a new data-driven domain-independent data augmentation method. Essentially, our approach samples new examples from the tangent planes of the train distribution. Augmenting data in this way aligns with the network tendency towards capturing the dominant features of its input signals. We evaluate FOMA on in-distribution generalization and out-of-distribution robustness benchmarks, and we show that it improves the generalization of several neural architectures. We also find that strong baselines based on mixup are less effective in comparison to our approach. Our code is publicly available athttps://github.com/azencot-group/FOMA.
- Abstract(参考訳): データ拡張(DA)法は、画像上の回転や時系列データ上の時間歪みなどの基礎となるデータ領域の特徴に適合する変換を適用することで、特定のドメインに適した合成サンプルを生成する。
対照的に、ドメインに依存しないアプローチ、例えば、混合は様々なデータモダリティに適用でき、汎用的で汎用的である。
DAによる分類タスクの正規化は、よく研究されているトピックであるが、回帰問題に対するDAの効果は、あまり注目されなかった。
このギャップを埋めるために、回帰のためにドメインに依存しない拡張の問題について検討し、新しいデータ駆動型ドメインに依存しないデータ拡張法であるFOMAを紹介した。
基本的に,本手法は列車分布の接面から新しい例をサンプリングする。
このようにデータを増やすことは、入力信号の優位な特徴を捉えるネットワークの傾向と一致している。
分布内一般化と分布外ロバスト性ベンチマークを用いてFOMAを評価し,いくつかのニューラルアーキテクチャの一般化を改善することを示す。
また、ミックスアップに基づく強いベースラインは、我々のアプローチと比べて効果が低いこともわかりました。
私たちのコードはhttps://github.com/azencot-group/FOMA.comで公開されています。
関連論文リスト
- SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
生成的敵ネットワーク(GAN)は通常、基礎となる多様体が複雑である非常に多様なデータから学ぶのに苦労する。
スコアマッチングは、生成したデータポイントを実データ多様体へ持続的にプッシュする能力のおかげで、この問題に対する有望な解決策であることを示す。
スコアマッチング規則性(SMaRt)を用いたGANの最適化を提案する。
論文 参考訳(メタデータ) (2023-11-30T03:05:14Z) - Domain Generalization by Rejecting Extreme Augmentations [13.114457707388283]
ドメイン外およびドメインの一般化設定では、データ拡張が顕著で堅牢なパフォーマンス向上をもたらすことを示す。
i)標準データ拡張変換の均一サンプリング,(ii)ドメイン外での作業において期待される高いデータ分散を考慮した強度変換,(iii)トレーニングを損なうような極端な変換を拒否する新たな報酬関数を考案する,という簡単なトレーニング手順を提案する。
論文 参考訳(メタデータ) (2023-10-10T14:46:22Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
ディープニューラルネットワークは、独立かつ同一に分散されたデータ(すなわち、d)から学習する上で、優れたパフォーマンスを達成する。
しかし、アウト・オブ・ディストリビューション(OoD)データを扱う場合、その性能は著しく低下する。
多様なOoDサンプルを合成するために,複数のドメインから学習した生成モデルを融合するための生成補間法(Generative Interpolation)を開発した。
論文 参考訳(メタデータ) (2023-07-23T03:53:53Z) - Single Domain Generalization via Normalised Cross-correlation Based
Convolutions [14.306250516592304]
単一ドメインの一般化は、単一のソースからのデータを使用して堅牢なモデルをトレーニングすることを目的としている。
本稿では、重みと入力特徴パッチの間の正規化相互相関を計算するXCNormという演算子を提案する。
この演算子で構成されるディープニューラルネットワークは、一般的な意味分布シフトに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2023-07-12T04:15:36Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
ドメインの一般化は、モデルが未知の統計を持つ対象のドメインに一般化できるように、マルチドメインのソースデータの予測モデルを学ぶことを目的としている。
既存のアプローチのほとんどは、ソースデータがドメインとクラスの両方の観点からバランスよく調整されているという前提の下で開発されている。
本稿では,多領域ソースデータの分布の違いによるバイアスを軽減するために,損失の重み付けを適応的に学習する自己均衡型領域一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T03:17:54Z) - A Batch Normalization Classifier for Domain Adaptation [0.0]
トレーニングセット外の予期せぬデータにモデルを適応させることは、新しいアプローチを動機づけ続ける一般的な問題である。
本研究では,ソフトマックスアクティベーション前の出力層におけるバッチ正規化の適用により,改良されたResNetモデルにおける視覚データ領域間の一般化が向上することを示す。
論文 参考訳(メタデータ) (2021-03-22T08:03:44Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。