Generating Tables from the Parametric Knowledge of Language Models
- URL: http://arxiv.org/abs/2406.10922v1
- Date: Sun, 16 Jun 2024 12:55:55 GMT
- Title: Generating Tables from the Parametric Knowledge of Language Models
- Authors: Yevgeni Berkovitch, Oren Glickman, Amit Somech, Tomer Wolfson,
- Abstract summary: We explore generating tables from the parametric knowledge of large language models (LLMs)
We examine the table generation abilities of four state-of-the-art LLMs: GPT-3.5, GPT-4, Llama2-13B, and Llama2-70B.
For evaluation, we introduce a novel benchmark, WikiTabGen which contains 100 curated Wikipedia tables.
- Score: 6.316194671269148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore generating factual and accurate tables from the parametric knowledge of large language models (LLMs). While LLMs have demonstrated impressive capabilities in recreating knowledge bases and generating free-form text, we focus on generating structured tabular data, which is crucial in domains like finance and healthcare. We examine the table generation abilities of four state-of-the-art LLMs: GPT-3.5, GPT-4, Llama2-13B, and Llama2-70B, using three prompting methods for table generation: (a) full-table, (b) row-by-row; (c) cell-by-cell. For evaluation, we introduce a novel benchmark, WikiTabGen which contains 100 curated Wikipedia tables. Tables are further processed to ensure their factual correctness and manually annotated with short natural language descriptions. Our findings reveal that table generation remains a challenge, with GPT-4 reaching the highest accuracy at 19.6%. Our detailed analysis sheds light on how various table properties, such as size, table popularity, and numerical content, influence generation performance. This work highlights the unique challenges in LLM-based table generation and provides a solid evaluation framework for future research. Our code, prompts and data are all publicly available: https://github.com/analysis-bots/WikiTabGen
Related papers
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.
TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.
Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
This paper proposes a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model.
Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics.
arXiv Detail & Related papers (2024-09-21T16:46:15Z) - TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning [61.14586098005874]
Current Large Language Models (LLMs) exhibit limited ability to understand table structures and to apply precise numerical reasoning.
We introduce our Tool-Augmented Reasoning framework for Tables (TART), which integrates LLMs with specialized tools.
TART contains three key components: a table formatter to ensure accurate data representation, a tool maker to develop specific computational tools, and an explanation generator to maintain explainability.
arXiv Detail & Related papers (2024-09-18T06:19:59Z) - Uncovering Limitations of Large Language Models in Information Seeking from Tables [28.19697259795014]
This paper introduces a more reliable benchmark for Table Information Seeking (TabIS)
To avoid the unreliable evaluation caused by text similarity-based metrics, TabIS adopts a single-choice question format (with two options per question) instead of a text generation format.
arXiv Detail & Related papers (2024-06-06T14:30:59Z) - TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition [6.253771639590562]
Table reasoning is a challenging task that requires understanding both natural language questions and structured data.
We propose Tabify, a novel method that leverages text-to-generation to decompose tables into smaller and relevant sub-tables.
Our method performs remarkably well on the WikiTQ benchmark, achieving an accuracy of 64.7%.
arXiv Detail & Related papers (2024-04-15T21:42:20Z) - Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? [49.688233418425995]
Struc-Bench is a comprehensive benchmark featuring prominent Large Language Models (LLMs)
We propose two innovative metrics, P-Score (Prompting Score) and H-Score (Heuristical Score)
Our experiments show that applying our structure-aware fine-tuning to LLaMA-7B leads to substantial performance gains.
arXiv Detail & Related papers (2023-09-16T11:31:58Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
People primarily consult tables to conduct data analysis or answer specific questions.
We define a new query-focused table summarization task, where text generation models have to perform human-like reasoning.
We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables.
arXiv Detail & Related papers (2023-05-23T17:43:51Z) - Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study [44.39031420687302]
Large language models (LLMs) are becoming attractive as few-shot reasoners to solve Natural Language (NL)-related tasks.
We try to understand this by designing a benchmark to evaluate the structural understanding capabilities of LLMs.
We propose $textitself-augmentation$ for effective structural prompting, such as critical value / range identification.
arXiv Detail & Related papers (2023-05-22T14:23:46Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
We develop a simple table-based QA model with minimal annotation effort.
We propose an omnivorous pretraining approach that consumes both natural and synthetic data.
arXiv Detail & Related papers (2022-07-08T01:23:45Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.