TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning
- URL: http://arxiv.org/abs/2409.11724v2
- Date: Fri, 1 Nov 2024 04:19:21 GMT
- Title: TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning
- Authors: Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov, Min-Yen Kan,
- Abstract summary: Current Large Language Models (LLMs) exhibit limited ability to understand table structures and to apply precise numerical reasoning.
We introduce our Tool-Augmented Reasoning framework for Tables (TART), which integrates LLMs with specialized tools.
TART contains three key components: a table formatter to ensure accurate data representation, a tool maker to develop specific computational tools, and an explanation generator to maintain explainability.
- Score: 61.14586098005874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current Large Language Models (LLMs) exhibit limited ability to understand table structures and to apply precise numerical reasoning, which is crucial for tasks such as table question answering (TQA) and table-based fact verification (TFV). To address these challenges, we introduce our Tool-Augmented Reasoning framework for Tables (TART), which integrates LLMs with specialized tools. TART contains three key components: a table formatter to ensure accurate data representation, a tool maker to develop specific computational tools, and an explanation generator to maintain explainability. We also present the TOOLTAB dataset, a new benchmark designed specifically for training LLMs in table-tool integration. Our experiments indicate that TART achieves substantial improvements over existing methods (e.g., Chain-of-Thought) by improving both the precision of data processing and the clarity of the reasoning process. Notably, TART paired with CodeLlama achieves 90.0% of the accuracy of the closed-sourced LLM GPT-3.5-turbo, highlighting its robustness in diverse real-world scenarios. All the code and data are available at https://github.com/XinyuanLu00/TART.
Related papers
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.
TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.
Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
This paper proposes a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model.
Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics.
arXiv Detail & Related papers (2024-09-21T16:46:15Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Generating Tables from the Parametric Knowledge of Language Models [6.316194671269148]
We explore generating tables from the parametric knowledge of large language models (LLMs)
We examine the table generation abilities of four state-of-the-art LLMs: GPT-3.5, GPT-4, Llama2-13B, and Llama2-70B.
For evaluation, we introduce a novel benchmark, WikiTabGen which contains 100 curated Wikipedia tables.
arXiv Detail & Related papers (2024-06-16T12:55:55Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts.
TACT contains challenging instructions that demand stitching information scattered across one or more texts.
We construct this dataset by leveraging an existing dataset of texts and their associated tables.
We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38%.
arXiv Detail & Related papers (2024-06-05T20:32:56Z) - TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios [52.73289223176475]
TableLLM is a robust large language model (LLM) with 13 billion parameters.
TableLLM is purpose-built for proficiently handling data manipulation tasks.
We have released the model checkpoint, source code, benchmarks, and a web application for user interaction.
arXiv Detail & Related papers (2024-03-28T11:21:12Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - TableQAKit: A Comprehensive and Practical Toolkit for Table-based
Question Answering [23.412691101965414]
TableQAKit is the first comprehensive toolkit designed specifically for TableQA.
TableQAKit is open-source with an interactive interface that includes visual operations, and comprehensive data for ease of use.
arXiv Detail & Related papers (2023-10-23T16:33:23Z) - TableGPT: Towards Unifying Tables, Nature Language and Commands into One
GPT [19.57099486334867]
TableGPT is a framework that enables large language models (LLMs) to understand and operate on tables using external functional commands.
TableGPT aims to provide convenience and accessibility to users by empowering them to effortlessly leverage tabular data.
arXiv Detail & Related papers (2023-07-17T17:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.