論文の概要: Avoiding Copyright Infringement via Large Language Model Unlearning
- arxiv url: http://arxiv.org/abs/2406.10952v2
- Date: Thu, 17 Oct 2024 01:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:16:34.987022
- Title: Avoiding Copyright Infringement via Large Language Model Unlearning
- Title(参考訳): 大規模言語モデルアンラーニングによる著作権侵害の回避
- Authors: Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, Eric Wong,
- Abstract要約: 本稿では,複数段階にわたる大規模言語モデルから著作権付きコンテンツを解放するための新しいフレームワークを提案する。
ランダムなラベリング損失を導入し、モデルの汎用的知識を確実に維持することにより、未学習の有効性を向上させる。
実験結果から,SSUは未学習の有効性と汎用言語能力とのトレードオフを効果的に達成できることが示された。
- 参考スコア(独自算出の注目度): 24.050754626661124
- License:
- Abstract: Pre-trained Large Language Models (LLMs) have demonstrated remarkable capabilities but also pose risks by learning and generating copyrighted material, leading to significant legal and ethical concerns. In real-world scenarios, model owners need to continuously address copyright infringement as new requests for content removal emerge at different time points. This leads to the need for sequential unlearning, where copyrighted content is removed sequentially as new requests arise. Despite its practical relevance, sequential unlearning in the context of copyright infringement has not been rigorously explored in existing literature. To address this gap, we propose Stable Sequential Unlearning (SSU), a novel framework designed to unlearn copyrighted content from LLMs over multiple time steps. Our approach works by identifying and removing specific weight updates in the model's parameters that correspond to copyrighted content. We improve unlearning efficacy by introducing random labeling loss and ensuring the model retains its general-purpose knowledge by adjusting targeted parameters. Experimental results show that SSU achieves an effective trade-off between unlearning efficacy and general-purpose language abilities, outperforming existing baselines.
- Abstract(参考訳): 事前訓練されたLarge Language Models (LLMs) は目覚ましい能力を示したが、著作権のある素材を学習し、生成することでリスクを生じさせ、法的、倫理的懸念を招いた。
現実のシナリオでは、モデル所有者は著作権侵害に継続的に対処する必要がある。
これにより、シーケンシャルなアンラーニングの必要性が生まれ、新しいリクエストが発生すると、著作権のあるコンテンツがシーケンシャルに削除される。
その実践的関連性にもかかわらず、著作権侵害の文脈におけるシーケンシャルなアンラーニングは、既存の文献では厳密に研究されていない。
このギャップに対処するために,複数の時間ステップで著作権付きコンテンツをLLMから解放する新しいフレームワークであるSSUを提案する。
我々のアプローチは、著作権のあるコンテンツに対応するモデルのパラメータの特定の重み付け更新を特定し、削除することで機能する。
ランダムなラベリング損失を導入し、ターゲットパラメータを調整することにより、モデルが汎用的な知識を維持することにより、未学習の有効性を向上させる。
実験の結果,SSUは未学習の有効性と汎用言語能力のトレードオフを効果的に達成し,既存のベースラインを上回っていることがわかった。
関連論文リスト
- RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model [42.77851688874563]
テキスト・画像拡散モデルのための強化学習に基づく著作権保護(RLCP)手法を提案する。
提案手法は,モデル生成データセットの品質を維持しつつ,著作権侵害コンテンツの生成を最小限に抑える。
論文 参考訳(メタデータ) (2024-08-29T15:39:33Z) - Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? [62.72729485995075]
著作権文書の生成に対する抑止剤としての透かしの有効性について検討する。
我々は、透かしがメンバーシップ推論攻撃(MIA)の成功率に悪影響を及ぼすことを発見した。
透かしにおける最近のMIAの成功率を改善するための適応的手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T16:53:09Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
言語モデル(LM)は、プライベートおよび著作権のあるコンテンツを含む大量のテキストデータに基づいて訓練される。
総合的な機械学習評価ベンチマークであるMUSEを提案する。
人気のある8つのアンラーニングアルゴリズムがハリー・ポッターの本やニュース記事をいかに効果的に解き放つかをベンチマークする。
論文 参考訳(メタデータ) (2024-07-08T23:47:29Z) - UnUnlearning: Unlearning is not sufficient for content regulation in advanced generative AI [50.61495097098296]
大規模言語モデル(LLM)におけるアンラーニングのパラダイムを再考する。
未学習の概念を導入し、未学習の知識を文脈内で再導入する。
我々は、不寛容な知識に対するコンテンツフィルタリングが不可欠であり、正確な未学習スキームでさえ、効果的なコンテンツ規制には不十分であると主張している。
論文 参考訳(メタデータ) (2024-06-27T10:24:35Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
言語モデル(LM)は、潜在的に著作権のある資料を含む様々なデータに対する広範な訓練からその能力を引き出す。
本稿では,LMの著作権削除の可能性と副作用を初めて評価する。
システムプロンプトの追加、デコード時間フィルタリングの介入、未学習アプローチなど、いくつかの戦略を検討する。
論文 参考訳(メタデータ) (2024-06-26T18:09:46Z) - Machine Unlearning in Large Language Models [0.7864304771129751]
本稿では,大規模言語モデル(LLM)を倫理,プライバシ,安全基準と整合させる手法を提案する。
本研究の目的は,LLMにおける学習情報を選択的に消去・修正することであり,有害な応答や著作権のあるコンテンツを対象としている。
論文 参考訳(メタデータ) (2024-05-24T02:12:51Z) - Copyright Traps for Large Language Models [6.902279764206365]
我々は著作権トラップを用いて,大規模言語モデルにおける著作権コンテンツの使用を検出することを提案する。
1.3Bモデルをスクラッチからトレーニングし、オリジナルコンテンツ(ブック)にトラップを挿入します。
直観とは裏腹に,従来の手法では,中長のトラップ文の繰り返し(100)が検出できないことが示されている。
論文 参考訳(メタデータ) (2024-02-14T18:09:53Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。