Concept-skill Transferability-based Data Selection for Large Vision-Language Models
- URL: http://arxiv.org/abs/2406.10995v2
- Date: Wed, 02 Oct 2024 17:20:28 GMT
- Title: Concept-skill Transferability-based Data Selection for Large Vision-Language Models
- Authors: Jaewoo Lee, Boyang Li, Sung Ju Hwang,
- Abstract summary: We introduce COINCIDE, an effective and scalable data selection technique for training vision-language models.
We cluster the training data using internal activations from a small model, which identifies concept-skill compositions needed by a target LVLM.
Experiments demonstrate that COINCIDE achieves superior performance and data selection efficiency against 8 strong baselines.
- Score: 56.0725292404808
- License:
- Abstract: Instruction tuning, or supervised finetuning on extensive task-specific data, is necessary for Large Vision-Language Models (LVLMs) to generalize well across a broad range of vision-language (VL) tasks. However, training on large VL datasets can become prohibitively expensive. In this work, we introduce COINCIDE, an effective and scalable data selection technique that uses a small model as a reference model to select visual instruction tuning data for efficient finetuning of a target LVLM, focusing on diversity and transferability. Specifically, we cluster the training data using internal activations from a small model, which identifies VL concept-skill compositions needed by a target LVLM. We then sample data from these diverse clusters by considering their density and transferability, or the ability to transfer well to other concept-skill compositions. This approach ensures the diversity of these compositions, which is vital for LVLM generalization. Extensive experiments demonstrate that COINCIDE achieves superior performance and data selection efficiency against 8 strong baselines on two distinct datasets: LLaVA-1.5 and Vision-Flan. Using only 20% of the LLaVA-1.5 dataset, COINCIDE achieves performance comparable to the LVLM finetuned on the whole dataset, with 70% reduction of the wall-clock running time. On the Vision-Flan dataset, our method achieves superior results with only 16.7% of the training data.
Related papers
- Scalable Vision Language Model Training via High Quality Data Curation [10.121967684111445]
We introduce an open-source vision language model (VLM) series achieving state-of-the-art (SOTA) performance in 2B and 8B parameters.
The following three key improvements contribute to SAILVL's leading performance.
arXiv Detail & Related papers (2025-01-10T13:27:04Z) - ICONS: Influence Consensus for Vision-Language Data Selection [39.454024810266176]
We introduce ICONS, a gradient-driven Influence CONsensus approach for vision-language data Selection.
Cross-task influence consensus is used to identify samples that are consistently valuable across multiple tasks.
Experiments show that models trained on our selected data (20% of LLaVA-665K) achieve 98.6% of the relative performance obtained using the full dataset.
arXiv Detail & Related papers (2024-12-31T21:33:38Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Bridge the Modality and Capability Gaps in Vision-Language Model Selection [62.26769826687365]
Vision Language Models (VLMs) excel in zero-shot image classification by pairing images with textual category names.
To better reuse the VLM resource, a promising strategy is selecting appropriate Pre-Trained VLMs from the VLM Zoo.
We analyze two inherent challenges in assessing the ability of a VLM in this Language-Only VLM selection.
We propose VLM Selection With gAp Bridging to mitigate the negative impact of two gaps.
arXiv Detail & Related papers (2024-03-20T17:54:58Z) - Less is More: High-value Data Selection for Visual Instruction Tuning [127.38740043393527]
We propose a high-value data selection approach TIVE, to eliminate redundancy within the visual instruction data and reduce the training cost.
Our approach using only about 15% data can achieve comparable average performance to the full-data fine-tuned model across eight benchmarks.
arXiv Detail & Related papers (2024-03-14T16:47:25Z) - Your Vision-Language Model Itself Is a Strong Filter: Towards
High-Quality Instruction Tuning with Data Selection [59.11430077029321]
We introduce a novel dataset selection method, Self-Filter, for vision-language models (VLMs)
In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM.
In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity.
arXiv Detail & Related papers (2024-02-19T20:08:48Z) - ALLaVA: Harnessing GPT4V-Synthesized Data for Lite Vision-Language Models [45.040292339670096]
Large vision-language models (LVLMs) have shown premise in a broad range of vision-language tasks with their strong reasoning and generalization capabilities.
This study aims to bridge the performance gap between traditional-scale LVLMs and resource-friendly lite versions by adopting high-quality training data.
arXiv Detail & Related papers (2024-02-18T19:26:49Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.