論文の概要: 3D Gaze Tracking for Studying Collaborative Interactions in Mixed-Reality Environments
- arxiv url: http://arxiv.org/abs/2406.11003v1
- Date: Sun, 16 Jun 2024 16:30:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 19:32:56.971869
- Title: 3D Gaze Tracking for Studying Collaborative Interactions in Mixed-Reality Environments
- Title(参考訳): 複合現実環境における協調的相互作用研究のための3次元視線追跡
- Authors: Eduardo Davalos, Yike Zhang, Ashwin T. S., Joyce H. Fonteles, Umesh Timalsina, Guatam Biswas,
- Abstract要約: 本研究では,複合現実感設定に適した3次元視線追跡のための新しい枠組みを提案する。
提案フレームワークは,現状のコンピュータビジョンと機械学習技術を利用して障害物を克服する。
- 参考スコア(独自算出の注目度): 3.8075244788223044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a novel framework for 3D gaze tracking tailored for mixed-reality settings, aimed at enhancing joint attention and collaborative efforts in team-based scenarios. Conventional gaze tracking, often limited by monocular cameras and traditional eye-tracking apparatus, struggles with simultaneous data synchronization and analysis from multiple participants in group contexts. Our proposed framework leverages state-of-the-art computer vision and machine learning techniques to overcome these obstacles, enabling precise 3D gaze estimation without dependence on specialized hardware or complex data fusion. Utilizing facial recognition and deep learning, the framework achieves real-time, tracking of gaze patterns across several individuals, addressing common depth estimation errors, and ensuring spatial and identity consistency within the dataset. Empirical results demonstrate the accuracy and reliability of our method in group environments. This provides mechanisms for significant advances in behavior and interaction analysis in educational and professional training applications in dynamic and unstructured environments.
- Abstract(参考訳): 本研究では,チームベースシナリオにおける共同作業の促進を目的とした,複合現実感設定に適した3次元視線追跡のための新しいフレームワークを提案する。
従来の視線追跡は、単眼カメラや従来の視線追跡装置によって制限されることが多いが、複数の参加者からの同時データ同期と分析に苦慮している。
提案フレームワークは、最先端のコンピュータビジョンと機械学習技術を利用してこれらの障害を克服し、特殊なハードウェアや複雑なデータ融合に依存することなく正確な3D視線推定を可能にする。
顔認識とディープラーニングを利用して、このフレームワークはリアルタイムに達成し、複数の個人にわたる視線パターンを追跡し、一般的な深度推定エラーに対処し、データセット内の空間的およびアイデンティティの整合性を確保する。
実験の結果,グループ環境における手法の精度と信頼性が示された。
これは、動的および非構造環境における教育的および専門的なトレーニングアプリケーションにおける行動および相互作用分析の大幅な進歩のメカニズムを提供する。
関連論文リスト
- Multi-person eye tracking for real-world scene perception in social settings [34.82692226532414]
モバイルアイトラッキングを実世界のマルチパーソン・セットアップに適用し、同期データをストリームし、記録し、分析するシステムを開発する。
本システムは,挑戦的な動的シーンにおける正確な時間同期と正確な視線投影を実現する。
この進歩は、協調行動、グループダイナミクス、社会的相互作用に関する洞察を、高い生態学的妥当性で得る。
論文 参考訳(メタデータ) (2024-07-08T19:33:17Z) - I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data [4.487146086221174]
本稿では,移動眼球追跡設定における物体の自動認識のための新しい人間中心学習アルゴリズムを提案する。
提案手法は,オブジェクト検出器と空間的関係を考慮した誘導型メッセージパッシングネットワーク(I-MPN)をシームレスに統合し,ノードプロファイル情報を活用し,オブジェクト相関を捉える。
論文 参考訳(メタデータ) (2024-06-10T13:08:31Z) - Robust Collaborative Perception without External Localization and Clock Devices [52.32342059286222]
複数のエージェントをまたいだ一貫した空間的時間的調整は、協調的な知覚の基礎である。
従来の手法は、ローカライゼーションとクロック信号を提供するために外部デバイスに依存している。
本稿では,様々なエージェントの知覚データに内在する幾何学的パターンを認識して整列する手法を提案する。
論文 参考訳(メタデータ) (2024-05-05T15:20:36Z) - CoSD: Collaborative Stance Detection with Contrastive Heterogeneous Topic Graph Learning [18.75039816544345]
我々はCoSD(CoSD)と呼ばれる新しい協調姿勢検出フレームワークを提案する。
CoSDは、テキスト、トピック、スタンスラベル間のトピック認識のセマンティクスと協調的なシグナルを学ぶ。
2つのベンチマークデータセットの実験では、CoSDの最先端検出性能が示されている。
論文 参考訳(メタデータ) (2024-04-26T02:04:05Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
ヒューマンオブジェクトインタラクション(HOI)検出は、コンピュータビジョンの課題である。
本稿では,構造化テキスト知識を組み込んだHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:52Z) - Asynchronous Collaborative Localization by Integrating Spatiotemporal
Graph Learning with Model-Based Estimation [22.63837164001751]
協調的な位置決めは、コネクテッドカーのようなロボットチームにとって、協調的に物体の位置を推定する重要な能力である。
協調的なローカライゼーションを実現するためには,観測対象間の複雑な関係をモデル化するなど,4つの課題に対処する必要がある。
本研究では,不確実性を考慮したグラフ学習モデルと状態推定を統合した新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-05T22:48:13Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
本研究では,連続時間ニューラルネットワークを用いた因果表現学習のための理論的,実験的枠組みを提案する。
本手法は,ドローンの視覚制御学習の文脈において,一連の複雑なタスクにおいて評価する。
論文 参考訳(メタデータ) (2021-06-15T17:45:32Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
本稿では,不完全な多視点観測のための深い変動情報ボトルネック (IB) 手法を提案する。
本手法は,対象物に関連のある視点内および視点間相互作用に焦点をあてるために,観測された視点の辺縁および結合表現にISBフレームワークを適用した。
実世界のデータセットの実験から、我々の手法はデータ統合から常に利益を得て、最先端のベンチマークより優れています。
論文 参考訳(メタデータ) (2021-02-05T06:05:39Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z) - Taskology: Utilizing Task Relations at Scale [28.09712466727001]
共同で訓練することで,タスクの集合間の固有の関係を活用できることが示される。
タスク間の関係を明確に活用することで、パフォーマンスが向上し、ラベル付きデータの必要性が劇的に低減される。
本稿では, 深度と正規予測, セマンティックセグメンテーション, 3次元運動とエゴモーション推定, および点雲における物体追跡と3次元検出という, タスクのサブセットについて示す。
論文 参考訳(メタデータ) (2020-05-14T22:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。