論文の概要: Can LLMs Understand the Implication of Emphasized Sentences in Dialogue?
- arxiv url: http://arxiv.org/abs/2406.11065v2
- Date: Sat, 28 Sep 2024 05:50:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:18.936851
- Title: Can LLMs Understand the Implication of Emphasized Sentences in Dialogue?
- Title(参考訳): LLMは対話における強調文の意味を理解できるか?
- Authors: Guan-Ting Lin, Hung-yi Lee,
- Abstract要約: 強調は人間のコミュニケーションにおいて重要な要素であり、対話における純粋テキストを超えて話者の意図と含意を示す。
本稿では,強調の意味を抽出した強調注釈付き対話サンプルを用いたベンチマークであるEmphasized-Talkを紹介する。
オープンソースと商用の両方で様々な大規模言語モデル(LLM)を評価し,その性能を重要視して評価する。
- 参考スコア(独自算出の注目度): 64.72966061510375
- License:
- Abstract: Emphasis is a crucial component in human communication, which indicates the speaker's intention and implication beyond pure text in dialogue. While Large Language Models (LLMs) have revolutionized natural language processing, their ability to understand emphasis in dialogue remains unclear. This paper introduces Emphasized-Talk, a benchmark with emphasis-annotated dialogue samples capturing the implications of emphasis. We evaluate various LLMs, both open-source and commercial, to measure their performance in understanding emphasis. Additionally, we propose an automatic evaluation pipeline using GPT-4, which achieves a high correlation with human rating. Our findings reveal that although commercial LLMs generally perform better, there is still significant room for improvement in comprehending emphasized sentences.
- Abstract(参考訳): 強調は人間のコミュニケーションにおいて重要な要素であり、対話における純粋テキストを超えて話者の意図と含意を示す。
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、対話に重点を置く能力は未だ不明である。
本稿では,強調の意味を抽出した強調注釈付き対話サンプルを用いたベンチマークであるEmphasized-Talkを紹介する。
オープンソースと商用の両方で様々なLCMを評価し,その性能を重要視して評価する。
また,GPT-4を用いた自動評価パイプラインを提案する。
商業用LLMは, 一般的には良好な性能を示すが, 強調文の理解が向上する余地は依然として大きいことが判明した。
関連論文リスト
- Frozen Large Language Models Can Perceive Paralinguistic Aspects of Speech [29.847183061204436]
大きな言語モデル(LLM)は、ユーザーの感情や会話スタイルを考慮に入れられる。
本研究では,音声エンコーダを用いたエンドツーエンドシステムを提案する。
このトレーニングフレームワークにより,音声中の意味的情報とパラ言語的情報の両方をキャプチャするトークンをエンコーダが生成できることがわかった。
論文 参考訳(メタデータ) (2024-10-02T01:32:47Z) - Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems [57.16442740983528]
クラウドソースラベルは、タスク指向の対話システムを評価する上で重要な役割を果たす。
従来の研究では、アノテーションプロセスで対話コンテキストの一部だけを使用することが提案されている。
本研究では,対話文脈がアノテーション品質に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-04-15T17:56:39Z) - Exploring the Factual Consistency in Dialogue Comprehension of Large Language Models [51.75805497456226]
本研究は,対話要約タスクの助けを借りて,事実整合性の問題に焦点を当てる。
評価の結果,LLMが生成する要約の26.8%が事実整合性を含んでいることがわかった。
LLMの対話理解能力を高めるために,自動構築マルチタスクデータを用いた微調整パラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-13T09:32:12Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
本報告では,人間型マルチターンチャットのための既存大規模言語モデルの予備的評価を行う。
そこで我々は,ChatSEEDに基づくマルチターン対話を発話によって生成する大規模言語モデル(LLM)を提案する。
GPT-4は優れた品質の人型多元対話を生成できるが、その性能は著しく上回っている。
論文 参考訳(メタデータ) (2023-10-20T16:53:51Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
我々は、よりパーソナライズされ魅力的な応答を提供するために、新しい言語的キューに基づく思考の連鎖(textitCue-CoT)を提案する。
中国語と英語の6つのデータセットからなる詳細な対話質問を用いたベンチマークを構築した。
実験により,提案手法は,すべてのデータセットにおいて,テクステルパーフルネスとテクスチタアクセプタビリティの両方の観点から,標準的プロンプト法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:27:43Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
本稿では,SPIDER, Structure Pre-trained DialoguE Readerについて述べる。
対話のような特徴をシミュレートするために,元のLM目的に加えて,2つの訓練目標を提案する。
広く使われている対話ベンチマークの実験結果から,新たに導入した自己教師型タスクの有効性が検証された。
論文 参考訳(メタデータ) (2021-05-23T15:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。