Investigating Annotator Bias in Large Language Models for Hate Speech Detection
- URL: http://arxiv.org/abs/2406.11109v4
- Date: Tue, 15 Oct 2024 04:29:29 GMT
- Title: Investigating Annotator Bias in Large Language Models for Hate Speech Detection
- Authors: Amit Das, Zheng Zhang, Najib Hasan, Souvika Sarkar, Fatemeh Jamshidi, Tathagata Bhattacharya, Mostafa Rahgouy, Nilanjana Raychawdhary, Dongji Feng, Vinija Jain, Aman Chadha, Mary Sandage, Lauramarie Pope, Gerry Dozier, Cheryl Seals,
- Abstract summary: This paper delves into the biases present in Large Language Models (LLMs) when annotating hate speech data.
Specifically targeting highly vulnerable groups within these categories, we analyze annotator biases.
We introduce our custom hate speech detection dataset, HateBiasNet, to conduct this research.
- Score: 5.589665886212444
- License:
- Abstract: Data annotation, the practice of assigning descriptive labels to raw data, is pivotal in optimizing the performance of machine learning models. However, it is a resource-intensive process susceptible to biases introduced by annotators. The emergence of sophisticated Large Language Models (LLMs) presents a unique opportunity to modernize and streamline this complex procedure. While existing research extensively evaluates the efficacy of LLMs, as annotators, this paper delves into the biases present in LLMs when annotating hate speech data. Our research contributes to understanding biases in four key categories: gender, race, religion, and disability with four LLMs: GPT-3.5, GPT-4o, Llama-3.1 and Gemma-2. Specifically targeting highly vulnerable groups within these categories, we analyze annotator biases. Furthermore, we conduct a comprehensive examination of potential factors contributing to these biases by scrutinizing the annotated data. We introduce our custom hate speech detection dataset, HateBiasNet, to conduct this research. Additionally, we perform the same experiments on the ETHOS (Mollas et al. 2022) dataset also for comparative analysis. This paper serves as a crucial resource, guiding researchers and practitioners in harnessing the potential of LLMs for data annotation, thereby fostering advancements in this critical field.
Related papers
- LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - BEADs: Bias Evaluation Across Domains [9.19312529999677]
Bias Evaluations Across Domains (BEADs) dataset is designed to support a wide array of NLP tasks.
Our findings indicate that BEADs effectively identifies numerous biases when fine-tuned on this dataset.
We make BEADs publicly available to promote more responsible AI development.
arXiv Detail & Related papers (2024-06-06T16:18:30Z) - Large Language Models for Data Annotation: A Survey [49.8318827245266]
The emergence of advanced Large Language Models (LLMs) presents an unprecedented opportunity to automate the complicated process of data annotation.
This survey includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
Large Language models (LLMs) exhibit harmful social biases.
This work introduces a novel approach utilizing ChatGPT to generate synthetic training data.
arXiv Detail & Related papers (2024-02-19T01:28:48Z) - ROBBIE: Robust Bias Evaluation of Large Generative Language Models [27.864027322486375]
Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes.
We compare 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs.
We conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements.
arXiv Detail & Related papers (2023-11-29T23:03:04Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.