ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs
- URL: http://arxiv.org/abs/2402.11764v2
- Date: Mon, 16 Sep 2024 05:28:43 GMT
- Title: ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs
- Authors: Pengrui Han, Rafal Kocielnik, Adhithya Saravanan, Roy Jiang, Or Sharir, Anima Anandkumar,
- Abstract summary: Large Language models (LLMs) exhibit harmful social biases.
This work introduces a novel approach utilizing ChatGPT to generate synthetic training data.
- Score: 65.9625653425636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language models (LLMs), while powerful, exhibit harmful social biases. Debiasing is often challenging due to computational costs, data constraints, and potential degradation of multi-task language capabilities. This work introduces a novel approach utilizing ChatGPT to generate synthetic training data, aiming to enhance the debiasing of LLMs. We propose two strategies: Targeted Prompting, which provides effective debiasing for known biases but necessitates prior specification of bias in question; and General Prompting, which, while slightly less effective, offers debiasing across various categories. We leverage resource-efficient LLM debiasing using adapter tuning and compare the effectiveness of our synthetic data to existing debiasing datasets. Our results reveal that: (1) ChatGPT can efficiently produce high-quality training data for debiasing other LLMs; (2) data produced via our approach surpasses existing datasets in debiasing performance while also preserving internal knowledge of a pre-trained LLM; and (3) synthetic data exhibits generalizability across categories, effectively mitigating various biases, including intersectional ones. These findings underscore the potential of synthetic data in advancing the fairness of LLMs with minimal retraining cost.
Related papers
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Efficacy of Synthetic Data as a Benchmark [3.2968976262860408]
We investigate the effectiveness of generating synthetic data through large language models (LLMs)
Our experiments show that while synthetic data can effectively capture performance of various methods for simpler tasks, it falls short for more complex tasks like named entity recognition.
We propose a new metric called the bias factor, which evaluates the biases introduced when the same LLM is used to both generate benchmarking data and to perform the tasks.
arXiv Detail & Related papers (2024-09-18T13:20:23Z) - Causal-Guided Active Learning for Debiasing Large Language Models [40.853803921563596]
Current generative large language models (LLMs) may still capture dataset biases and utilize them for generation.
Previous prior-knowledge-based debiasing methods and fine-tuning-based debiasing methods may not be suitable for current LLMs.
We propose a casual-guided active learning framework, which utilizes LLMs itself to automatically and autonomously identify informative biased samples and induce the bias patterns.
arXiv Detail & Related papers (2024-08-23T09:46:15Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
Large Language Models (LLMs) have become pivotal in advancing natural language processing, yet their potential to perpetuate biases poses significant concerns.
This paper introduces a new framework employing Direct Preference Optimization (DPO) to mitigate gender, racial, and religious biases in English text.
By developing a loss function that favors less biased over biased completions, our approach cultivates a preference for respectful and non-discriminatory language.
arXiv Detail & Related papers (2024-07-18T22:32:20Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Self-Supervised Position Debiasing for Large Language Models [39.261233221850155]
We propose a self-supervised position debiasing (SOD) framework to mitigate position bias for large language models (LLMs)
Experiments on eight datasets and five tasks show that SOD consistently outperforms existing methods in mitigating three types of position biases.
arXiv Detail & Related papers (2024-01-02T14:12:41Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.