論文の概要: Investigating Annotator Bias in Large Language Models for Hate Speech Detection
- arxiv url: http://arxiv.org/abs/2406.11109v5
- Date: Sat, 16 Nov 2024 18:56:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:26.855440
- Title: Investigating Annotator Bias in Large Language Models for Hate Speech Detection
- Title(参考訳): ヘイト音声検出のための大規模言語モデルにおけるアノテーションバイアスの検討
- Authors: Amit Das, Zheng Zhang, Najib Hasan, Souvika Sarkar, Fatemeh Jamshidi, Tathagata Bhattacharya, Mostafa Rahgouy, Nilanjana Raychawdhary, Dongji Feng, Vinija Jain, Aman Chadha, Mary Sandage, Lauramarie Pope, Gerry Dozier, Cheryl Seals,
- Abstract要約: 本稿では,ヘイトスピーチデータに注釈をつける際に,Large Language Models (LLMs) に存在するバイアスについて考察する。
具体的には、これらのカテゴリ内の非常に脆弱なグループを対象として、アノテータバイアスを分析します。
我々は,この研究を行うために,独自のヘイトスピーチ検出データセットであるHateBiasNetを紹介した。
- 参考スコア(独自算出の注目度): 5.589665886212444
- License:
- Abstract: Data annotation, the practice of assigning descriptive labels to raw data, is pivotal in optimizing the performance of machine learning models. However, it is a resource-intensive process susceptible to biases introduced by annotators. The emergence of sophisticated Large Language Models (LLMs) presents a unique opportunity to modernize and streamline this complex procedure. While existing research extensively evaluates the efficacy of LLMs, as annotators, this paper delves into the biases present in LLMs when annotating hate speech data. Our research contributes to understanding biases in four key categories: gender, race, religion, and disability with four LLMs: GPT-3.5, GPT-4o, Llama-3.1 and Gemma-2. Specifically targeting highly vulnerable groups within these categories, we analyze annotator biases. Furthermore, we conduct a comprehensive examination of potential factors contributing to these biases by scrutinizing the annotated data. We introduce our custom hate speech detection dataset, HateBiasNet, to conduct this research. Additionally, we perform the same experiments on the ETHOS (Mollas et al. 2022) dataset also for comparative analysis. This paper serves as a crucial resource, guiding researchers and practitioners in harnessing the potential of LLMs for data annotation, thereby fostering advancements in this critical field.
- Abstract(参考訳): データアノテーション(生データに記述ラベルを割り当てるプラクティス)は、機械学習モデルのパフォーマンスを最適化する上で重要である。
しかし、アノテータが導入したバイアスの影響を受けやすいリソース集約プロセスである。
高度なLarge Language Models(LLM)の出現は、この複雑な手続きを近代化し、合理化するユニークな機会を提供する。
本研究は,LPMのアノテータとしての有効性を広く評価する一方で,ヘイトスピーチデータのアノテート時にLLMに存在するバイアスについて検討する。
GPT-3.5, GPT-4o, Llama-3.1, Gemma-2の4つのLSMで, 性別, 人種, 宗教, 障害の4つの主要なカテゴリーにおけるバイアスの理解に寄与する。
具体的には、これらのカテゴリ内の非常に脆弱なグループを対象として、アノテータバイアスを分析します。
さらに、アノテーション付きデータを精査することにより、これらのバイアスに寄与する潜在的な因子を網羅的に調査する。
我々は,この研究を行うために,独自のヘイトスピーチ検出データセットであるHateBiasNetを紹介した。
さらに、ETHOS(Mollas et al 2022)データセット上でも、比較分析のために同様の実験を行う。
本論文は,LLMの可能性をデータアノテーションに活用する上で,研究者や実践者たちを指導する上で重要な資源として機能する。
関連論文リスト
- LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - BEADs: Bias Evaluation Across Domains [9.19312529999677]
Bias Evaluations Across Domains (BEADs)データセットは、幅広いNLPタスクをサポートするように設計されている。
この結果から,BEADは,このデータセットを微調整した場合に,多くのバイアスを効果的に識別できることが示唆された。
BEADを公開して、より責任のあるAI開発を促進します。
論文 参考訳(メタデータ) (2024-06-06T16:18:30Z) - Large Language Models for Data Annotation: A Survey [49.8318827245266]
LLM(Advanced Large Language Models)の出現は、データアノテーションの複雑なプロセスを自動化する前例のない機会を提供する。
この調査には、LLMが注釈付けできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションにLLMを使用する際の主な課題と制限に関する詳細な議論が含まれている。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - ROBBIE: Robust Bias Evaluation of Large Generative Language Models [27.864027322486375]
異なるプロンプトベースのデータセットを使用して、複数のテキストドメインと人口統計軸にわたる社会的バイアスを測定することができる。
我々は,12の人口動態軸と5のジェネレーションLLMの家系の6つの異なるプロンプトベースのバイアスと毒性の指標を比較した。
3つのバイアス/毒性の緩和技術が、我々の一連の測定においていかにうまく機能するかを包括的に研究する。
論文 参考訳(メタデータ) (2023-11-29T23:03:04Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。