DELRec: Distilling Sequential Pattern to Enhance LLM-based Recommendation
- URL: http://arxiv.org/abs/2406.11156v2
- Date: Tue, 18 Jun 2024 04:00:59 GMT
- Title: DELRec: Distilling Sequential Pattern to Enhance LLM-based Recommendation
- Authors: Guohao Sun, Haoyi Zhang,
- Abstract summary: Sequential recommendation (SR) tasks enhance recommendation accuracy by capturing the connection between users' past interactions and their changing preferences.
Conventional models often focus solely on capturing sequential patterns within the training data, neglecting the broader context and semantic information embedded in item titles from external sources.
DelRec aims to extract knowledge from SR models and enable LLMs to easily comprehend and utilize this supplementary information for more effective sequential recommendations.
- Score: 3.5113201254928117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation (SR) tasks enhance recommendation accuracy by capturing the connection between users' past interactions and their changing preferences. Conventional models often focus solely on capturing sequential patterns within the training data, neglecting the broader context and semantic information embedded in item titles from external sources. This limits their predictive power and adaptability. Recently, large language models (LLMs) have shown promise in SR tasks due to their advanced understanding capabilities and strong generalization abilities. Researchers have attempted to enhance LLMs' recommendation performance by incorporating information from SR models. However, previous approaches have encountered problems such as 1) only influencing LLMs at the result level; 2) increased complexity of LLMs recommendation methods leading to reduced interpretability; 3) incomplete understanding and utilization of SR models information by LLMs. To address these problems, we proposes a novel framework, DELRec, which aims to extract knowledge from SR models and enable LLMs to easily comprehend and utilize this supplementary information for more effective sequential recommendations. DELRec consists of two main stages: 1) SR Models Pattern Distilling, focusing on extracting behavioral patterns exhibited by SR models using soft prompts through two well-designed strategies; 2) LLMs-based Sequential Recommendation, aiming to fine-tune LLMs to effectively use the distilled auxiliary information to perform SR tasks. Extensive experimental results conducted on three real datasets validate the effectiveness of the DELRec framework.
Related papers
- Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR)
We propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations.
arXiv Detail & Related papers (2024-03-25T05:12:18Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
We focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks.
We propose Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-08-22T02:25:04Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.