Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation
- URL: http://arxiv.org/abs/2408.07427v2
- Date: Wed, 16 Oct 2024 02:37:50 GMT
- Title: Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation
- Authors: CanYi Liu, Wei Li, Youchen, Zhang, Hui Li, Rongrong Ji,
- Abstract summary: Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
- Score: 83.87767101732351
- License:
- Abstract: Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences. Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS. Despite their attractive performance, existing LLM-based SRS still exhibit some limitations, including neglecting intra-item relations, ignoring long-term collaborative knowledge and using inflexible architecture designs for adaption. To alleviate these issues, we propose an LLM-based sequential recommendation model named DARec. Built on top of coarse-grained adaption for capturing inter-item relations, DARec is further enhanced with (1) context masking that models intra-item relations to help LLM better understand token and item semantics in the context of SRS, (2) collaborative knowledge injection that helps LLM incorporate long-term collaborative knowledge, and (3) a dynamic adaption mechanism that uses Bayesian optimization to flexibly choose layer-wise adapter architectures in order to better incorporate different sequential information. Extensive experiments demonstrate that DARec can effectively handle sequential recommendation in a dynamic and adaptive manner.
Related papers
- Full-Stack Optimized Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [44.685176786857284]
We propose ReLLaX (Retrieval-enhanced Large Language models Plus), a framework offering optimization across data, prompt, and parameter levels.
At the data level, we introduce Semantic User Behavior Retrieval (SUBR) to reduce sequence heterogeneity, making it easier for LLMs to extract key information.
For prompt-level enhancement, we employ Soft Prompt Augmentation (SPA) to inject collaborative knowledge, aligning item representations with recommendation tasks.
At the parameter level, we propose Component Fully-interactive LoRA (CFLoRA), which enhances LoRA's expressiveness by enabling interactions between its components
arXiv Detail & Related papers (2025-01-23T03:05:13Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.
We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.