NLDF: Neural Light Dynamic Fields for Efficient 3D Talking Head Generation
- URL: http://arxiv.org/abs/2406.11259v1
- Date: Mon, 17 Jun 2024 06:53:37 GMT
- Title: NLDF: Neural Light Dynamic Fields for Efficient 3D Talking Head Generation
- Authors: Niu Guanchen,
- Abstract summary: A novel Neural Light Dynamic Fields model is proposed aiming to achieve generating high quality 3D talking face with significant speedup.
The NLDF represents light fields based on light segments, and a deep network is used to learn the entire light beam's information at once.
The propose method effectively represents the facial light dynamics in 3D talking video generation, and it achieves approximately 30 times faster speed compared to state of the art NeRF based method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Talking head generation based on the neural radiation fields model has shown promising visual effects. However, the slow rendering speed of NeRF seriously limits its application, due to the burdensome calculation process over hundreds of sampled points to synthesize one pixel. In this work, a novel Neural Light Dynamic Fields model is proposed aiming to achieve generating high quality 3D talking face with significant speedup. The NLDF represents light fields based on light segments, and a deep network is used to learn the entire light beam's information at once. In learning the knowledge distillation is applied and the NeRF based synthesized result is used to guide the correct coloration of light segments in NLDF. Furthermore, a novel active pool training strategy is proposed to focus on high frequency movements, particularly on the speaker mouth and eyebrows. The propose method effectively represents the facial light dynamics in 3D talking video generation, and it achieves approximately 30 times faster speed compared to state of the art NeRF based method, with comparable generation visual quality.
Related papers
- Magnituder Layers for Implicit Neural Representations in 3D [23.135779936528333]
We introduce a novel neural network layer called the "magnituder"
By integrating magnituders into standard feed-forward layer stacks, we achieve improved inference speed and adaptability.
Our approach enables a zero-shot performance boost in trained implicit neural representation models.
arXiv Detail & Related papers (2024-10-13T08:06:41Z) - Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation [51.346733271166926]
Mesh2NeRF is an approach to derive ground-truth radiance fields from textured meshes for 3D generation tasks.
We validate the effectiveness of Mesh2NeRF across various tasks.
arXiv Detail & Related papers (2024-03-28T11:22:53Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - NeRFMeshing: Distilling Neural Radiance Fields into
Geometrically-Accurate 3D Meshes [56.31855837632735]
We propose a compact and flexible architecture that enables easy 3D surface reconstruction from any NeRF-driven approach.
Our final 3D mesh is physically accurate and can be rendered in real time on an array of devices.
arXiv Detail & Related papers (2023-03-16T16:06:03Z) - Real-time Neural Radiance Talking Portrait Synthesis via Audio-spatial
Decomposition [61.6677901687009]
We propose an efficient NeRF-based framework that enables real-time synthesizing of talking portraits.
Our method can generate realistic and audio-lips synchronized talking portrait videos.
arXiv Detail & Related papers (2022-11-22T16:03:11Z) - Fast Dynamic Radiance Fields with Time-Aware Neural Voxels [106.69049089979433]
We propose a radiance field framework by representing scenes with time-aware voxel features, named as TiNeuVox.
Our framework accelerates the optimization of dynamic radiance fields while maintaining high rendering quality.
Our TiNeuVox completes training with only 8 minutes and 8-MB storage cost while showing similar or even better rendering performance than previous dynamic NeRF methods.
arXiv Detail & Related papers (2022-05-30T17:47:31Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
Rendering a single pixel requires querying the Neural Radiance Field network hundreds of times.
NeLF presents a more straightforward representation over NeRF in novel view.
We show the key to successfully learning a deep NeLF network is to have sufficient data.
arXiv Detail & Related papers (2022-03-31T17:57:05Z) - Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering [60.02806355570514]
Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence.
We propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field.
Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or based on volumetrics.
arXiv Detail & Related papers (2021-06-04T17:54:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.