論文の概要: i-SRT: Aligning Large Multimodal Models for Videos by Iterative Self-Retrospective Judgment
- arxiv url: http://arxiv.org/abs/2406.11280v1
- Date: Mon, 17 Jun 2024 07:33:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 17:54:42.283484
- Title: i-SRT: Aligning Large Multimodal Models for Videos by Iterative Self-Retrospective Judgment
- Title(参考訳): i-SRT:反復的自己反省的判断によるビデオの大規模マルチモーダルモデル調整
- Authors: Daechul Ahn, Yura Choi, San Kim, Youngjae Yu, Dongyeop Kang, Jonghyun Choi,
- Abstract要約: 反応生成と選好モデリングの両方を強化するために,自己ふりかえりを用いた新しい手法を提案する。
多様なビデオ質問応答ベンチマークによる経験的評価は,i-SRTが先行技術よりも優れていたことを示す。
- 参考スコア(独自算出の注目度): 36.69910114305134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning Video Large Multimodal Models (VLMMs) face challenges such as modality misalignment and verbose responses. Although iterative approaches such as self-rewarding or iterative direct preference optimization (DPO) recently showed a significant improvement in language model alignment, particularly on reasoning tasks, self-aligned models applied to large video-language models often result in lengthy and irrelevant responses. To address these challenges, we propose a novel method that employs self-retrospection to enhance both response generation and preference modeling, and call iterative self-retrospective judgment (i-SRT). By revisiting and evaluating already generated content and preference in loop, i-SRT improves the alignment between textual and visual modalities, reduce verbosity, and enhances content relevance. Our empirical evaluations across diverse video question answering benchmarks demonstrate that i-SRT significantly outperforms prior arts. We are committed to opensourcing our code, models, and datasets to encourage further investigation.
- Abstract(参考訳): ビデオ大規模マルチモーダルモデル(VLMM)のアライジングは、モダリティのミスアライメントや冗長応答といった課題に直面している。
自己回帰や反復的直接選好最適化(DPO)のような反復的アプローチは、最近、言語モデルのアライメント、特に推論タスクにおいて顕著な改善が見られたが、大規模なビデオ言語モデルに適用された自己整合モデルは、長大かつ無関係な応答をもたらすことが多い。
これらの課題に対処するため、反応生成と選好モデリングの両方を強化するために自己ふりかえりを用いた新しい手法を提案し、反復的自己ふりかえり判断(i-SRT)と呼ぶ。
i-SRTは、既に生成されたコンテンツとループの嗜好を再考し、評価することにより、テキストと視覚の調和を改善し、冗長性を低減し、コンテンツ関連性を高める。
多様なビデオ質問応答ベンチマークによる経験的評価は,i-SRTが先行技術よりも優れていたことを示す。
私たちは、さらなる調査を促進するために、コード、モデル、データセットをオープンソース化することを約束しています。
関連論文リスト
- Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization [19.37373012848517]
大規模視覚言語モデル(VLM)は、特に横断的不整合の形で、重要な幻覚を引き起こす傾向がある。
本稿では、画像検索を利用した新しいアライメントフレームワークRe-Alignを紹介する。
我々はまた、微調整中に視覚的嗜好を付加する、標準の直接選好最適化の拡張であるrDPOも導入する。
論文 参考訳(メタデータ) (2025-02-18T18:59:57Z) - IPO: Iterative Preference Optimization for Text-to-Video Generation [15.763879468841818]
人間のフィードバックを取り入れて生成した映像の質を高めるための反復選好最適化手法を提案する。
IPOは、直接選好最適化(Direct Preference Optimization)やポイントワイズスコア(point-wise score)のように、ビデオ世代をペアワイズランキングで正当化する批判モデルを活用する。
さらに、IPOは批判モデルにマルチモダリティの大規模言語モデルを導入し、リトレーニングや緩和を必要とせず、自動的に好みラベルを割り当てることを可能にする。
論文 参考訳(メタデータ) (2025-02-04T08:14:34Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
我々は、レンズを通して自己改善の能力について、新たな視点を提供する。
言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。
SFTとRLHFに基づく自己改善アルゴリズムの2つの自然ファミリーを解析する。
論文 参考訳(メタデータ) (2024-12-02T20:24:17Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
LVLM(Large Vision-Language Models)は、訓練済みの大規模言語モデル(LLM)と視覚モデルを統合することで、指導チューニングを通じて大幅に進歩した。
LVLMは、しばしば幻覚現象を示し、生成されたテキスト応答は言語的に妥当に見えるが、入力画像に矛盾する。
本稿では,候補応答を反復的に生成し,各応答に対する報酬を評価し,微調整のための選好データをキュレートすることで,モデルの自己改善を可能にするCalibrated Self-Rewarding(CSR)アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T14:30:33Z) - Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward [118.65089648651308]
本稿では,映像コンテンツのプロキシとして詳細な動画キャプションを利用する新しいフレームワークを提案する。
本稿では,DPOによる報酬の調整により,ビデオ質問応答(QA)タスクにおけるビデオLMMの性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-04-01T17:28:16Z) - Active Preference Learning for Large Language Models [12.093302163058436]
我々は、好みラベルをよりよく活用するために、DPOのアクティブな学習戦略を開発する。
本稿では,言語モデルの予測エントロピーに基づく,プロンプト/コンプリートペアの実用的な獲得関数を提案する。
提案手法は,ペアの選好データに基づく微調整の学習率と最終性能の両方を改善する方法を示す。
論文 参考訳(メタデータ) (2024-02-12T23:09:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。