From Pixels to Progress: Generating Road Network from Satellite Imagery for Socioeconomic Insights in Impoverished Areas
- URL: http://arxiv.org/abs/2406.11282v1
- Date: Mon, 17 Jun 2024 07:40:13 GMT
- Title: From Pixels to Progress: Generating Road Network from Satellite Imagery for Socioeconomic Insights in Impoverished Areas
- Authors: Yanxin Xi, Yu Liu, Zhicheng Liu, Sasu Tarkoma, Pan Hui, Yong Li,
- Abstract summary: We propose a systematic road extraction framework combining an encoder-decoder architecture and morphological operations on satellite imagery.
Experiments of road network extraction on real-world data in impoverished regions achieve a 42.7% enhancement in the F1-score.
We also propose a comprehensive road network dataset covering approximately 794,178 km2 area and 17.048 million people in 382 impoverished counties in China.
- Score: 22.782323200872366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Sustainable Development Goals (SDGs) aim to resolve societal challenges, such as eradicating poverty and improving the lives of vulnerable populations in impoverished areas. Those areas rely on road infrastructure construction to promote accessibility and economic development. Although publicly available data like OpenStreetMap is available to monitor road status, data completeness in impoverished areas is limited. Meanwhile, the development of deep learning techniques and satellite imagery shows excellent potential for earth monitoring. To tackle the challenge of road network assessment in impoverished areas, we develop a systematic road extraction framework combining an encoder-decoder architecture and morphological operations on satellite imagery, offering an integrated workflow for interdisciplinary researchers. Extensive experiments of road network extraction on real-world data in impoverished regions achieve a 42.7% enhancement in the F1-score over the baseline methods and reconstruct about 80% of the actual roads. We also propose a comprehensive road network dataset covering approximately 794,178 km2 area and 17.048 million people in 382 impoverished counties in China. The generated dataset is further utilized to conduct socioeconomic analysis in impoverished counties, showing that road network construction positively impacts regional economic development. The technical appendix, code, and generated dataset can be found at https://github.com/tsinghua-fib-lab/Road_network_extraction_impoverished_counties.
Related papers
- Paved or unpaved? A Deep Learning derived Road Surface Global Dataset from Mapillary Street-View Imagery [39.10390786976492]
This dataset expands the availability of global road surface information by over 3 million kilometers.
Most regions showed moderate to high paved road coverage (60-80%), but significant gaps were noted in specific areas of Africa and Asia.
We propose a hybrid deep learning approach which combines SWIN-Transformer based road surface prediction and CLIP-and-DL segmentation based thresholding for filtering of bad quality images.
arXiv Detail & Related papers (2024-10-24T09:32:53Z) - Holistically-Nested Structure-Aware Graph Neural Network for Road Extraction [6.537257686406911]
This paper presents a novel graph neural network (GNN) which simultaneously detects both road regions and road borders.
Experiments on challenging dataset demonstrate that the proposed architecture can improve the road border delineation and road extraction accuracy.
arXiv Detail & Related papers (2024-07-02T20:11:09Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - Bridging the Urban-Rural Connectivity Gap through Intelligent Space,
Air, and Ground Networks [68.8204255655161]
Connectivity in rural areas is one of the main challenges of communication networks.
We highlight the latest works on rural connectivity, discuss the solutions for terrestrial networks, and study the potential benefits of nonterrestrial networks.
We discuss the rural connectivity challenges and highlight the latest projects and research and the empowerment of networks using AI.
arXiv Detail & Related papers (2022-02-25T13:40:35Z) - Predicting Poverty Level from Satellite Imagery using Deep Neural
Networks [0.0]
I develop deep learning computer vision methods that can predict a region's poverty level from an overhead satellite image.
I explore the impact that data quantity and data augmentation have on the representational power and overall accuracy of the networks.
arXiv Detail & Related papers (2021-11-30T18:57:24Z) - GAEA: Graph Augmentation for Equitable Access via Reinforcement Learning [50.90625274621288]
Disparate access to resources by different subpopulations is a prevalent issue in societal and sociotechnical networks.
We introduce a new class of problems, Graph Augmentation for Equitable Access (GAEA), to enhance equity in networked systems by editing graph edges under budget constraints.
arXiv Detail & Related papers (2020-12-07T18:29:32Z) - Utilizing Satellite Imagery Datasets and Machine Learning Data Models to
Evaluate Infrastructure Change in Undeveloped Regions [0.0]
This research aims to allow automated monitoring for largescale infrastructure projects, such as railways, to determine reliable metrics that define and predict the direction construction initiatives could take.
By utilizing photogrammetric techniques on available satellite data to create 3D Meshes and Digital Surface Models (DSM) we hope to effectively predict transport routes.
arXiv Detail & Related papers (2020-09-01T02:11:14Z) - Road Mapping in Low Data Environments with OpenStreetMap [0.3162999570707049]
A comprehensive, up-to-date mapping of the geographical distribution of roads has the potential to act as an indicator for broader economic development.
This work investigates the viability of high resolution satellite imagery and crowd-sourced resources like OpenStreetMap in the construction of such a mapping.
arXiv Detail & Related papers (2020-06-14T19:39:57Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
We demonstrate an interpretable computational framework to accurately predict poverty at a local level by applying object detectors to satellite images.
Using the weighted counts of objects as features, we achieve 0.539 Pearson's r2 in predicting village-level poverty in Uganda, a 31% improvement over existing (and less interpretable) benchmarks.
arXiv Detail & Related papers (2020-02-05T02:50:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.