GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency
- URL: http://arxiv.org/abs/2412.09511v1
- Date: Thu, 12 Dec 2024 17:59:03 GMT
- Title: GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency
- Authors: Dongyue Lu, Lingdong Kong, Tianxin Huang, Gim Hee Lee,
- Abstract summary: Existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data.
We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models.
GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data.
- Score: 50.11520458252128
- License:
- Abstract: Identifying affordance regions on 3D objects from semantic cues is essential for robotics and human-machine interaction. However, existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data and a reliance on 3D backbones focused on geometric encoding, which often lack resilience to real-world noise and data corruption. We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models. We employ a dual-branch architecture with Gaussian splatting to establish consistent mappings between 3D point clouds and 2D representations, enabling realistic 2D renderings from sparse point clouds. A granularity-adaptive fusion module and a 2D-3D consistency alignment module further strengthen cross-modal alignment and knowledge transfer, allowing the 3D branch to benefit from the rich semantics and generalization capacity of 2D models. To holistically assess the robustness, we introduce two new corruption-based benchmarks: PIAD-C and LASO-C. Extensive experiments on public datasets and our benchmarks show that GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data, demonstrating robust and adaptable affordance prediction under diverse conditions. Code and corruption datasets have been made publicly available.
Related papers
- Improving 2D Feature Representations by 3D-Aware Fine-Tuning [17.01280751430423]
Current visual foundation models are trained purely on unstructured 2D data.
We show that fine-tuning on 3D-aware data improves the quality of emerging semantic features.
arXiv Detail & Related papers (2024-07-29T17:59:21Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
We introduce novel framework for retrieval-based quality enhancement in text-to-3D generation.
We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency.
arXiv Detail & Related papers (2024-02-05T12:50:30Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - JOTR: 3D Joint Contrastive Learning with Transformers for Occluded Human
Mesh Recovery [84.67823511418334]
This paper presents 3D JOint contrastive learning with TRansformers framework for handling occluded 3D human mesh recovery.
Our method includes an encoder-decoder transformer architecture to fuse 2D and 3D representations for achieving 2D$&$3D aligned results.
arXiv Detail & Related papers (2023-07-31T02:58:58Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for 2D and 3D computer vision.
We propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training.
arXiv Detail & Related papers (2023-02-27T17:56:18Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.