論文の概要: Management Decisions in Manufacturing using Causal Machine Learning -- To Rework, or not to Rework?
- arxiv url: http://arxiv.org/abs/2406.11308v1
- Date: Mon, 17 Jun 2024 08:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:50:52.731107
- Title: Management Decisions in Manufacturing using Causal Machine Learning -- To Rework, or not to Rework?
- Title(参考訳): 因果機械学習を用いた製造業における経営決定 - やり直すか、やり直さないか?
- Authors: Philipp Schwarz, Oliver Schacht, Sven Klaassen, Daniel Grünbaum, Sebastian Imhof, Martin Spindler,
- Abstract要約: 本稿では,製造システムにおける最適リワークポリシーを推定するためのデータ駆動モデルを提案する。
我々は、任意の再作業ステップを可能にする、多段階のロットベースシステム内の単一のプロダクションステージについて検討する。
本研究では、因果機械学習、特にDML(Double/debiased Machine Learning)の手法を用いて、データから条件付き処理効果を推定する。
- 参考スコア(独自算出の注目度): 0.5772546394254112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a data-driven model for estimating optimal rework policies in manufacturing systems. We consider a single production stage within a multistage, lot-based system that allows for optional rework steps. While the rework decision depends on an intermediate state of the lot and system, the final product inspection, and thus the assessment of the actual yield, is delayed until production is complete. Repair steps are applied uniformly to the lot, potentially improving some of the individual items while degrading others. The challenge is thus to balance potential yield improvement with the rework costs incurred. Given the inherently causal nature of this decision problem, we propose a causal model to estimate yield improvement. We apply methods from causal machine learning, in particular double/debiased machine learning (DML) techniques, to estimate conditional treatment effects from data and derive policies for rework decisions. We validate our decision model using real-world data from opto-electronic semiconductor manufacturing, achieving a yield improvement of 2 - 3% during the color-conversion process of white light-emitting diodes (LEDs).
- Abstract(参考訳): 本稿では,製造システムにおける最適リワークポリシーを推定するためのデータ駆動モデルを提案する。
我々は、任意の再作業ステップを可能にする、多段階のロットベースシステム内の単一のプロダクションステージについて検討する。
再作業決定は、ロットとシステムの中間状態に依存するが、最終製品検査、すなわち実際の収量の評価は、生産が完了するまで遅れる。
修復ステップは、ロットに対して一様に適用され、個々のアイテムの一部を改善しながら、他のアイテムを劣化させる可能性がある。
したがって、潜在的収量改善と再作業コストのバランスをとることが課題である。
この決定問題の因果性を考えると、収量改善を推定するための因果モデルを提案する。
本稿では、因果機械学習、特にDML(Double/debiased Machine Learning)の手法を用いて、データから条件付き処理効果を推定し、再作業決定のためのポリシーを導出する。
我々は、白色発光ダイオード(LED)の色変換過程において、2~3%の収率向上を実現し、光電子半導体製造からの実世界データを用いて決定モデルを検証した。
関連論文リスト
- Learning to Refine with Fine-Grained Natural Language Feedback [81.70313509881315]
我々は,3つの異なるLLM能力の構成要素として,フィードバックによる洗練を検討することを提案する。
提案手法の鍵となる特性は,ステップ2の批判モデルがエラーに対してきめ細かいフィードバックを与えることができる点である。
文書基盤要約の事実整合性を改善する作業において,異なる機能モデルがDCRによる精細化の恩恵を受けることを示す。
論文 参考訳(メタデータ) (2024-07-02T16:15:01Z) - Rare Class Prediction Model for Smart Industry in Semiconductor Manufacturing [1.3955252961896323]
本研究では, 半導体製造プロセスから収集したIn situデータに対して, 希少なクラス予測手法を開発した。
第一の目的は、ノイズとクラス不均衡の問題に対処し、クラス分離を強化するモデルを構築することである。
ROC曲線はAUCが0.95、精度が0.66、リコールが0.96である。
論文 参考訳(メタデータ) (2024-06-06T22:09:43Z) - Successive Refinement in Large-Scale Computation: Advancing Model
Inference Applications [67.76749044675721]
階層化分解能計算の解を導入する。
これらの解により、最終結果よりも早い段階でより解像度の低い結果が得られる。
論文 参考訳(メタデータ) (2024-02-11T15:36:33Z) - A Hybrid Approach of Transfer Learning and Physics-Informed Modeling:
Improving Dissolved Oxygen Concentration Prediction in an Industrial
Wastewater Treatment Plant [0.0]
目的は, 産業排水処理プラントの予測性能を, (i) プロセスの基盤となる物理を捉えたオープンソースのシミュレーションモデル, (ii) ノイズと限られたデータで特徴づけられるが, 同一の精製所にある別の産業プラント, (iii) の知識を伝達することによって向上することである。
その結果,テスト性能は27%,検証性能は59%に向上した。
論文 参考訳(メタデータ) (2024-01-20T11:53:08Z) - Learning an Inventory Control Policy with General Inventory Arrival
Dynamics [2.3715198714015893]
本稿では,一般的な到着ダイナミクスの存在下での在庫管理方針の学習と検証の問題に対処する。
我々の知る限りでは、これは任意の到着ダイナミクスまたは順序量の任意の下流後処理を扱う最初の作業である。
論文 参考訳(メタデータ) (2023-10-26T05:49:13Z) - Cost-Effective Retraining of Machine Learning Models [2.9461360639852914]
データが時間とともに変化するにつれて、そのパフォーマンスを維持するためには、機械学習(ML)モデルを再トレーニングすることが重要です。
これにより、再トレーニングの頻度が高過ぎると、不要な計算コストが発生し、再トレーニングが不十分になる。
本稿では,MLモデルをいつ再トレーニングするかを自動かつ費用対効果で決定するMLシステムを提案する。
論文 参考訳(メタデータ) (2023-10-06T13:02:29Z) - Causally Learning an Optimal Rework Policy [0.0]
生産ロットの再作業には、最終製品が要求仕様を満たすように調整された前の生産段階を繰り返すことが含まれる。
光電子半導体製造における色変換過程における再加工工程の条件処理効果を機械学習を用いて推定する。
論文 参考訳(メタデータ) (2023-06-07T07:58:58Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
本手法は,文献から得られた4つの領域において,最先端の成果が得られることを示す。
提案手法は, 局所性仮定が破られた場合, 既存手法よりも200%近く性能が向上する。
論文 参考訳(メタデータ) (2023-05-26T11:17:45Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
我々はミネラルウールのための視覚品質管理システムを開発した。
ウール標本のX線画像が収集され、欠陥および非欠陥サンプルのトレーニングセットが作成された。
我々は98%以上の精度のモデルを得たが、同社の現在の手順と比較すると、20%以上の欠陥製品を認識することができる。
論文 参考訳(メタデータ) (2022-11-01T13:58:02Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
本稿では,意思決定に直接関連のある表現を学習するための,VCR(Value-Consistent Expression Learning)という新しい手法を提案する。
この想像された状態と環境によって返される実状態とを一致させる代わりに、VCRは両方の状態に$Q$-valueヘッドを適用し、2つのアクション値の分布を得る。
検索不要なRLアルゴリズムに対して,提案手法が新たな最先端性能を実現することが実証された。
論文 参考訳(メタデータ) (2022-06-25T03:02:25Z) - Towards Standardizing Reinforcement Learning Approaches for Stochastic
Production Scheduling [77.34726150561087]
強化学習はスケジューリングの問題を解決するのに使える。
既存の研究は、コードが利用できない複雑なシミュレーションに依存している。
から選ぶべきRLの設計の広大な配列があります。
モデル記述の標準化 - 生産セットアップとRL設計の両方 - と検証スキームは前提条件です。
論文 参考訳(メタデータ) (2021-04-16T16:07:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。