論文の概要: Semi-Supervised Domain Adaptation Using Target-Oriented Domain Augmentation for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2406.11313v1
- Date: Mon, 17 Jun 2024 08:19:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:50:52.720471
- Title: Semi-Supervised Domain Adaptation Using Target-Oriented Domain Augmentation for 3D Object Detection
- Title(参考訳): 3次元物体検出のためのターゲット指向領域拡張を用いた半監督領域適応
- Authors: Yecheol Kim, Junho Lee, Changsoo Park, Hyoung won Kim, Inho Lim, Christopher Chang, Jun Won Choi,
- Abstract要約: 3Dオブジェクト検出は、自動運転やロボティクスといったアプリケーションには不可欠だ。
Semi-Supervised Domain Adaptation (SSDA)は、ソースドメインからターゲットドメインへの知識転送によって、これらの課題を軽減することを目的としている。
本稿では,LiDARを用いた3Dオブジェクト検出に適した新しいSSDA手法であるTarget-Oriented Augmentation Domain (TODA)を提案する。
- 参考スコア(独自算出の注目度): 13.873877368139667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object detection is crucial for applications like autonomous driving and robotics. However, in real-world environments, variations in sensor data distribution due to sensor upgrades, weather changes, and geographic differences can adversely affect detection performance. Semi-Supervised Domain Adaptation (SSDA) aims to mitigate these challenges by transferring knowledge from a source domain, abundant in labeled data, to a target domain where labels are scarce. This paper presents a new SSDA method referred to as Target-Oriented Domain Augmentation (TODA) specifically tailored for LiDAR-based 3D object detection. TODA efficiently utilizes all available data, including labeled data in the source domain, and both labeled data and unlabeled data in the target domain to enhance domain adaptation performance. TODA consists of two stages: TargetMix and AdvMix. TargetMix employs mixing augmentation accounting for LiDAR sensor characteristics to facilitate feature alignment between the source-domain and target-domain. AdvMix applies point-wise adversarial augmentation with mixing augmentation, which perturbs the unlabeled data to align the features within both labeled and unlabeled data in the target domain. Our experiments conducted on the challenging domain adaptation tasks demonstrate that TODA outperforms existing domain adaptation techniques designed for 3D object detection by significant margins. The code is available at: https://github.com/rasd3/TODA.
- Abstract(参考訳): 3Dオブジェクト検出は、自動運転やロボティクスといったアプリケーションには不可欠だ。
しかし,実環境においては,センサのアップグレードや天候変化,地理的差異によるセンサデータ分布の変化が検出性能に悪影響を及ぼす可能性がある。
Semi-Supervised Domain Adaptation (SSDA)は、ラベル付きデータに富んだソースドメインからラベルが不足しているターゲットドメインに知識を移すことによって、これらの課題を軽減することを目的としている。
本稿では,LiDARを用いた3Dオブジェクト検出に適した新しいSSDA手法であるTarget-Oriented Domain Augmentation (TODA)を提案する。
TODAは、ソースドメイン内のラベル付きデータを含むすべての利用可能なデータと、ターゲットドメイン内のラベル付きデータと未ラベル付きデータの両方を効率的に利用して、ドメイン適応性能を向上させる。
TODAはTargetMixとAdvMixの2つのステージで構成されている。
TargetMixは、ソースドメインとターゲットドメイン間の機能アライメントを容易にするために、LiDARセンサー特性の混合拡張会計を採用している。
AdvMixは、対象領域内のラベル付きデータとラベルなしデータの両方の機能を調整するために、ラベルなしデータを摂動させる混合拡張により、ポイントワイドの対角拡大を適用する。
本研究は,TODAが既存の3次元物体検出技術より優れていることを示すものである。
コードは、https://github.com/rasd3/TODA.comで入手できる。
関連論文リスト
- STAL3D: Unsupervised Domain Adaptation for 3D Object Detection via Collaborating Self-Training and Adversarial Learning [21.063779140059157]
既存の3Dオブジェクト検出は、ドメインギャップのため、高価なアノテーションコストと未知のデータへの転送性に悩まされる。
STAL3Dと呼ばれるSTとALの協調による3次元オブジェクト検出のための新しい非教師付きドメイン適応フレームワークを提案し、擬似ラベルと特徴分布アライメントの相補的利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-06-27T17:43:35Z) - Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
室内3次元物体検出における非教師なし領域適応のための新しいフレームワークを提案する。
合成データセット3D-FRONTから実世界のデータセットScanNetV2とSUN RGB-Dへの適応結果は、ソースオンリーベースラインよりも9.7%、9.1%のmAP25が顕著に改善されていることを示している。
論文 参考訳(メタデータ) (2024-06-17T08:18:41Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
半教師付きドメイン適応(SSDA)は、ソースとターゲットのドメイン分布をブリッジすることを目的としており、少数のターゲットラベルが利用可能である。
既存のSSDAの作業は、ソースドメインとターゲットドメインの両方からラベル情報をフル活用して、ドメイン間の機能アライメントに失敗する。
本稿では,新しいSSDA手法であるIDMNE(Inter-domain Mixup with Neighborhood Expansion)を提案する。
論文 参考訳(メタデータ) (2024-01-21T10:20:46Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
ポイントクラウドからの3Dオブジェクト検出は、安全クリティカルな自動運転において不可欠である。
本稿では,密度依存性ドメインギャップに対処する密度依存性ドメイン適応フレームワークを提案する。
3つの広く採用されている3次元オブジェクト検出データセットの実験結果から,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-19T06:33:07Z) - Bi3D: Bi-domain Active Learning for Cross-domain 3D Object Detection [32.29833072399945]
クロスドメインな3Dオブジェクト検出タスクを解決するために,Biドメインのアクティブな学習手法,すなわちBi3Dを提案する。
Bi3D は UDA ベースの作業 (84.29%) と比較して有望な目標領域検出精度 (KITTI の89.63%) を達成する。
論文 参考訳(メタデータ) (2023-03-10T12:38:37Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
本稿では,3次元物体検出(SSDA3D)のための半改良型領域適応法を提案する。
SSDA3Dはドメイン間適応ステージとドメイン内一般化ステージを含む。
実験の結果,10%のラベル付きターゲットデータしか持たないSSDA3Dは,100%のターゲットラベルを持つ完全教師付きオラクルモデルを上回ることができることがわかった。
論文 参考訳(メタデータ) (2022-12-06T09:32:44Z) - Geometry-Aware Network for Domain Adaptive Semantic Segmentation [64.00345743710653]
本稿では,ドメイン間のギャップを小さくするために,ドメイン適応のための幾何学的ネットワーク(GANDA)を提案する。
我々は、RGB-D画像から生成された点雲上の3Dトポロジを利用して、対象領域における座標色歪みと擬似ラベルの微細化を行う。
我々のモデルは,GTA5->CityscapesとSynTHIA->Cityscapesの最先端技術より優れている。
論文 参考訳(メタデータ) (2022-12-02T00:48:44Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
本稿では、ソースとターゲットドメイン間のドメインギャップを埋めるために、教師なしのドメイン適応フレームワークを提案する。
天候の歪みをシミュレートするデータ拡張方式を用いて、ドメインの混乱を増し、ソースデータへの過度な適合を防止する。
DENSEデータセットで行った実験は、我々の手法がドメインギャップを大幅に軽減できることを示している。
論文 参考訳(メタデータ) (2022-03-07T18:10:40Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。