論文の概要: Deep-Learning-Based Channel Estimation for Distributed MIMO with 1-bit Radio-Over-Fiber Fronthaul
- arxiv url: http://arxiv.org/abs/2406.11325v2
- Date: Fri, 5 Jul 2024 15:51:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 22:44:48.616200
- Title: Deep-Learning-Based Channel Estimation for Distributed MIMO with 1-bit Radio-Over-Fiber Fronthaul
- Title(参考訳): 1ビット無線-Over-Fiberフロントエンドを用いた分散MIMOのディープラーニングに基づくチャネル推定
- Authors: Alireza Bordbar, Lise Aabel, Christian Häger, Christian Fager, Giuseppe Durisi,
- Abstract要約: 分散マルチインプット・マルチアウトプット(MIMO)アーキテクチャにおけるパイロット支援・アップリンクチャネル推定の問題点を考察する。
我々は最近Nguyenらによって提案されたディープラーニングに基づくチャネル推定アルゴリズムを適用した。
提案手法は,Bussgang線形最小二乗誤差チャネル推定器よりも有意に優れていることを示す。
- 参考スコア(独自算出の注目度): 11.370869277334227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of pilot-aided, uplink channel estimation in a distributed massive multiple-input multiple-output (MIMO) architecture, in which the access points are connected to a central processing unit via fiber-optical fronthaul links, carrying a two-level-quantized version of the received analog radio-frequency signal. We adapt to this architecture the deep-learning-based channel-estimation algorithm recently proposed by Nguyen et al. (2023), and explore its robustness to the additional signal distortions (beyond 1-bit quantization) introduced in the considered architecture by the automatic gain controllers (AGCs) and by the comparators. These components are used at the access points to generate the two-level analog waveform from the received signal. Via simulation results, we illustrate that the proposed channel-estimation method outperforms significantly the Bussgang linear minimum mean-square error channel estimator, and it is robust against the additional impairments introduced by the AGCs and the comparators.
- Abstract(参考訳): 我々は、受信したアナログ無線周波数信号の2レベル量子化バージョンを担いながら、ファイバ・オプティカル・フロントホールリンクを介して、アクセスポイントを中央処理ユニットに接続する分散マルチインプット・マルチアウトプット(MIMO)アーキテクチャにおけるパイロット支援・アップリンクチャネル推定の問題を考える。
我々は、最近Nguyenらによって提案されたディープラーニングに基づくチャネル推定アルゴリズム(2023)に適応し、自動ゲインコントローラ(AGC)とコンパレータによって検討されたアーキテクチャで導入された信号歪み(1ビット量子化)に対する頑健さを探求する。
これらのコンポーネントは、受信した信号から2レベルアナログ波形を生成するためにアクセスポイントで使用される。
シミュレーションの結果から,提案手法は,Bussgang線形平均二乗誤差チャネル推定器よりも有意に優れており,AGCやコンパレータが導入した付加的な障害に対して頑健であることを示す。
関連論文リスト
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
この課題に対処するために, 深部生成モデル(DGM)に基づく手法を提案する。
アップリンクチャネルとダウンリンクチャネルの部分的相互性を実行し、まず、周波数非依存のチャネルパラメータを推定する。
次に、各伝搬路の位相である周波数固有チャネルパラメータをダウンリンクトレーニングにより推定する。
論文 参考訳(メタデータ) (2022-03-09T18:32:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
本稿では,送信受信フィルタ,星座形状,それに付随するビットラベリング,およびニューラルネットワーク(NN)ベースの検出器の結合設計のための学習に基づく手法を提案する。
この方法は、隣接するチャネルリーク比(ACLR)とピーク・ツー・アベイジ・パワー比(PAPR)の制約を同時に満たしつつ、達成可能な情報レートを最大化する。
論文 参考訳(メタデータ) (2021-09-02T14:51:16Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning [51.72869237847767]
周波数分割二重化システムでは、ダウンリンクチャネル状態情報(CSI)取得方式は高いトレーニングとフィードバックのオーバーヘッドをもたらす。
これらのオーバーヘッドを削減するためにディープラーニングを用いたアップリンク支援ダウンリンクチャネル獲得フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-12T10:12:28Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。