WaDec: Decompiling WebAssembly Using Large Language Model
- URL: http://arxiv.org/abs/2406.11346v3
- Date: Wed, 11 Sep 2024 10:05:37 GMT
- Title: WaDec: Decompiling WebAssembly Using Large Language Model
- Authors: Xinyu She, Yanjie Zhao, Haoyu Wang,
- Abstract summary: WebAssembly (abbreviated Wasm) has emerged as a cornerstone of web development.
Despite its advantages, Wasm's binary nature presents significant challenges for developers and researchers.
We introduce a novel approach, WaDec, which is the first use of a fine-tuned LLM to interpret and decompile Wasm binary code.
- Score: 5.667013605202579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: WebAssembly (abbreviated Wasm) has emerged as a cornerstone of web development, offering a compact binary format that allows high-performance applications to run at near-native speeds in web browsers. Despite its advantages, Wasm's binary nature presents significant challenges for developers and researchers, particularly regarding readability when debugging or analyzing web applications. Therefore, effective decompilation becomes crucial. Unfortunately, traditional decompilers often struggle with producing readable outputs. While some large language model (LLM)-based decompilers have shown good compatibility with general binary files, they still face specific challenges when dealing with Wasm. In this paper, we introduce a novel approach, WaDec, which is the first use of a fine-tuned LLM to interpret and decompile Wasm binary code into a higher-level, more comprehensible source code representation. The LLM was meticulously fine-tuned using a specialized dataset of wat-c code snippets, employing self-supervised learning techniques. This enables WaDec to effectively decompile not only complete wat functions but also finer-grained wat code snippets. Our experiments demonstrate that WaDec markedly outperforms current state-of-the-art tools, offering substantial improvements across several metrics. It achieves a code inflation rate of only 3.34%, a dramatic 97% reduction compared to the state-of-the-art's 116.94%. Unlike baselines' output that cannot be directly compiled or executed, WaDec maintains a recompilability rate of 52.11%, a re-execution rate of 43.55%, and an output consistency of 27.15%. Additionally, it significantly exceeds state-of-the-art performance in AST edit distance similarity by 185%, cyclomatic complexity by 8%, and cosine similarity by 41%, achieving an average code similarity above 50%.
Related papers
- ReF Decompile: Relabeling and Function Call Enhanced Decompile [50.86228893636785]
The goal of decompilation is to convert compiled low-level code (e.g., assembly code) back into high-level programming languages.
This task supports various reverse engineering applications, such as vulnerability identification, malware analysis, and legacy software migration.
arXiv Detail & Related papers (2025-02-17T12:38:57Z) - Token-by-Token Regeneration and Domain Biases: A Benchmark of LLMs on Advanced Mathematical Problem-Solving [0.0]
This study evalu-ates 10 large language models (LLMs) with 7 to 8 billion parameters using the MATH dataset.
The focus is on their ability to generate executable Python code as a step in their reasoning process, involving over 9,450 code executions.
arXiv Detail & Related papers (2025-01-28T17:11:36Z) - Is This the Same Code? A Comprehensive Study of Decompilation Techniques for WebAssembly Binaries [4.66875056781341]
We present a novel framework for empirically evaluating C-based decompilers from various aspects including correctness/ readability/ and structural similarity.
This in turn contributes to bolstering the security and reliability of software systems that rely on WASM and native binaries.
arXiv Detail & Related papers (2024-11-04T17:08:03Z) - Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - Demystifying and Assessing Code Understandability in Java Decompilation [3.2671789531342457]
Decompilation, the process of converting machine-level code into readable source code, plays a critical role in reverse engineering.
We propose the first empirical study on the understandability of Java decompiled code.
arXiv Detail & Related papers (2024-09-30T14:44:00Z) - Towards Effective and Efficient Non-autoregressive Decoding Using Block-based Attention Mask [74.64216073678617]
AMD performs parallel NAR inference within contiguous blocks of output labels concealed using attention masks.
A beam search algorithm is designed to leverage a dynamic fusion of CTC, AR Decoder, and AMD probabilities.
Experiments on the LibriSpeech-100hr corpus suggest the tripartite Decoder incorporating the AMD module produces a maximum decoding speed-up ratio of 1.73x.
arXiv Detail & Related papers (2024-06-14T13:42:38Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
We propose a novel zero-shot synthetic code detector based on the similarity between the original code and its LLM-rewritten variants.
Our results demonstrate a significant improvement over existing SOTA synthetic content detectors.
arXiv Detail & Related papers (2024-05-25T08:57:28Z) - ReGAL: Refactoring Programs to Discover Generalizable Abstractions [59.05769810380928]
Generalizable Abstraction Learning (ReGAL) is a method for learning a library of reusable functions via codeization.
We find that the shared function libraries discovered by ReGAL make programs easier to predict across diverse domains.
For CodeLlama-13B, ReGAL results in absolute accuracy increases of 11.5% on LOGO, 26.1% on date understanding, and 8.1% on TextCraft, outperforming GPT-3.5 in two of three domains.
arXiv Detail & Related papers (2024-01-29T18:45:30Z) - Extending Source Code Pre-Trained Language Models to Summarise
Decompiled Binaries [4.0484792045035505]
We extend large pre-trained language models of source code to summarise decompiled binary functions.
We investigate the impact of input and data properties on the performance of such models.
BinT5 achieves the state-of-the-art BLEU-4 score of 60.83, 58.82, and 44.21 for summarising source, decompiled, and synthetically stripped decompiled code.
arXiv Detail & Related papers (2023-01-04T16:56:33Z) - Boosting Neural Networks to Decompile Optimized Binaries [13.255618541522436]
Decompilation aims to transform a low-level program language (LPL) into its functionally-equivalent high-level program language (HPL)
We propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries.
arXiv Detail & Related papers (2023-01-03T06:45:54Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.