Theoretically Achieving Continuous Representation of Oriented Bounding Boxes
- URL: http://arxiv.org/abs/2402.18975v2
- Date: Tue, 16 Apr 2024 09:49:15 GMT
- Title: Theoretically Achieving Continuous Representation of Oriented Bounding Boxes
- Authors: Zi-Kai Xiao, Guo-Ye Yang, Xue Yang, Tai-Jiang Mu, Junchi Yan, Shi-min Hu,
- Abstract summary: This paper endeavors to completely solve the issue of discontinuity in Oriented Bounding Box representation.
We propose a novel representation method called Continuous OBB (COBB) which can be readily integrated into existing detectors.
For fairness and transparency of experiments, we have developed a modularized benchmark based on the open-source deep learning framework Jittor's detection toolbox JDet for OOD evaluation.
- Score: 64.15627958879053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considerable efforts have been devoted to Oriented Object Detection (OOD). However, one lasting issue regarding the discontinuity in Oriented Bounding Box (OBB) representation remains unresolved, which is an inherent bottleneck for extant OOD methods. This paper endeavors to completely solve this issue in a theoretically guaranteed manner and puts an end to the ad-hoc efforts in this direction. Prior studies typically can only address one of the two cases of discontinuity: rotation and aspect ratio, and often inadvertently introduce decoding discontinuity, e.g. Decoding Incompleteness (DI) and Decoding Ambiguity (DA) as discussed in literature. Specifically, we propose a novel representation method called Continuous OBB (COBB), which can be readily integrated into existing detectors e.g. Faster-RCNN as a plugin. It can theoretically ensure continuity in bounding box regression which to our best knowledge, has not been achieved in literature for rectangle-based object representation. For fairness and transparency of experiments, we have developed a modularized benchmark based on the open-source deep learning framework Jittor's detection toolbox JDet for OOD evaluation. On the popular DOTA dataset, by integrating Faster-RCNN as the same baseline model, our new method outperforms the peer method Gliding Vertex by 1.13% mAP50 (relative improvement 1.54%), and 2.46% mAP75 (relative improvement 5.91%), without any tricks.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Edge Based Oriented Object Detection [8.075609633483248]
We propose a unique loss function based on edge gradients to enhance the detection accuracy of oriented objects.
We achieve a mAP increase of 1.3% on the DOTA dataset.
arXiv Detail & Related papers (2023-09-15T09:19:38Z) - Semi-DETR: Semi-Supervised Object Detection with Detection Transformers [105.45018934087076]
We analyze the DETR-based framework on semi-supervised object detection (SSOD)
We present Semi-DETR, the first transformer-based end-to-end semi-supervised object detector.
Our method outperforms all state-of-the-art methods by clear margins.
arXiv Detail & Related papers (2023-07-16T16:32:14Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - Abstraction and Refinement: Towards Scalable and Exact Verification of
Neural Networks [9.85360493553261]
Deep neural networks (DNNs) have been increasingly deployed in practice, but the lack of robustness hinders their applications in safety-critical domains.
We present a novel abstraction-refinement approach for scalable and exact DNN verification.
arXiv Detail & Related papers (2022-07-02T07:04:20Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Improved Branch and Bound for Neural Network Verification via Lagrangian
Decomposition [161.09660864941603]
We improve the scalability of Branch and Bound (BaB) algorithms for formally proving input-output properties of neural networks.
We present a novel activation-based branching strategy and a BaB framework, named Branch and Dual Network Bound (BaDNB)
BaDNB outperforms previous complete verification systems by a large margin, cutting average verification times by factors up to 50 on adversarial properties.
arXiv Detail & Related papers (2021-04-14T09:22:42Z) - Incremental Verification of Fixed-Point Implementations of Neural
Networks [0.19573380763700707]
We develop and evaluate a novel symbolic verification framework using incremental bounded model checking (BMC), satisfiability modulo theories (SMT), and invariant inference.
Our approach was able to verify and produce examples for 85.8% of 21 test cases considering different input images, and 100% of the properties related to covering methods.
arXiv Detail & Related papers (2020-12-21T10:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.