論文の概要: Preserving Knowledge in Large Language Model with Model-Agnostic Self-Decompression
- arxiv url: http://arxiv.org/abs/2406.11354v2
- Date: Wed, 19 Jun 2024 11:36:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 01:07:15.336693
- Title: Preserving Knowledge in Large Language Model with Model-Agnostic Self-Decompression
- Title(参考訳): モデルに依存しない自己圧縮を伴う大規模言語モデルにおける知識の保存
- Authors: Zilun Zhang, Yutao Sun, Tiancheng Zhao, Leigang Sha, Ruochen Xu, Kyusong Lee, Jianwei Yin,
- Abstract要約: 大規模言語モデル(LLM)は、ドメイン固有のデータに対して、事前訓練後または監督された微調整後(SFT)において、破滅的な忘れ込みに悩まされることが多い。
本稿では,TG-SFTに着目し,SFTデータを合成的に生成する。
- 参考スコア(独自算出の注目度): 40.4998607679863
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Humans can retain old knowledge while learning new information, but Large Language Models (LLMs) often suffer from catastrophic forgetting when post-pretrained or supervised fine-tuned (SFT) on domain-specific data. Moreover, for Multimodal Large Language Models (MLLMs) which are composed of the LLM base and visual projector (e.g. LLaVA), a significant decline in performance on language benchmarks was observed compared to their single-modality counterparts. To address these challenges, we introduce a novel model-agnostic self-decompression method, Tree Generation (TG), that decompresses knowledge within LLMs into the training corpus. This paper focuses on TG-SFT, which can synthetically generate SFT data for the instruction tuning steps. By incorporating the dumped corpus during SFT for MLLMs, we significantly reduce the forgetting problem.
- Abstract(参考訳): 人間は新しい情報を学習しながら古い知識を保持することができるが、Large Language Models(LLM)は、ドメイン固有のデータに基づいて、事前訓練後または監督された微調整後(SFT)を忘れることに悩むことが多い。
さらに,LLMベースとビジュアルプロジェクタ(例えばLLaVA)から構成されるMLLMに対して,言語ベンチマークの性能は,単一のモダリティモデルと比較して著しく低下した。
これらの課題に対処するために,LLM内の知識をトレーニングコーパスに圧縮するモデルに依存しない自己圧縮手法であるツリー生成(TG)を導入する。
本稿では,TG-SFTに着目し,SFTデータを合成的に生成する。
MLLMのSFT中に捨てたコーパスを組み込むことで, 忘れる問題を大幅に軽減する。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Mixture of Soft Prompts for Controllable Data Generation [21.84489422361048]
直接予測ではなく,データ拡張のためのツールとして,ソフトプロンプトの混合(MSP)を提案する。
提案手法は, 強いベースラインと比較した場合の3つのベンチマークに対して, 最先端の結果を得る。
論文 参考訳(メタデータ) (2023-03-02T21:13:56Z) - Differentially Private Decoding in Large Language Models [14.221692239892207]
本稿では,復号段階で既に訓練済みのモデルに適用可能な,単純で分かり易く,計算的に軽量な摂動機構を提案する。
我々の摂動メカニズムはモデルに依存しず、どんな大規模言語モデルとも併用することができる。
論文 参考訳(メタデータ) (2022-05-26T20:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。