Refiner: Restructure Retrieval Content Efficiently to Advance Question-Answering Capabilities
- URL: http://arxiv.org/abs/2406.11357v2
- Date: Tue, 18 Jun 2024 02:44:27 GMT
- Title: Refiner: Restructure Retrieval Content Efficiently to Advance Question-Answering Capabilities
- Authors: Zhonghao Li, Xuming Hu, Aiwei Liu, Kening Zheng, Sirui Huang, Hui Xiong,
- Abstract summary: Large Language Models (LLMs) are limited by their parametric knowledge, leading to hallucinations in knowledge-extensive tasks.
We propose $textitRefiner$, an end-to-end extract-and-restructure paradigm that operates in the post-retrieval process of RAG.
- Score: 30.1331670544648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are limited by their parametric knowledge, leading to hallucinations in knowledge-extensive tasks. To address this, Retrieval-Augmented Generation (RAG) incorporates external document chunks to expand LLM knowledge. Furthermore, compressing information from document chunks through extraction or summarization can improve LLM performance. Nonetheless, LLMs still struggle to notice and utilize scattered key information, a problem known as the "lost-in-the-middle" syndrome. Therefore, we typically need to restructure the content for LLM to recognize the key information. We propose $\textit{Refiner}$, an end-to-end extract-and-restructure paradigm that operates in the post-retrieval process of RAG. $\textit{Refiner}$ leverages a single decoder-only LLM to adaptively extract query-relevant contents verbatim along with the necessary context, and section them based on their interconnectedness, thereby highlights information distinction, and aligns downstream LLMs with the original context effectively. Experiments show that a trained $\textit{Refiner}$ (with 7B parameters) exhibits significant gain to downstream LLM in improving answer accuracy, and outperforms other state-of-the-art advanced RAG and concurrent compressing approaches in various single-hop and multi-hop QA tasks. Notably, $\textit{Refiner}$ achieves a 80.5% tokens reduction and a 1.6-7.0% improvement margin in multi-hop tasks compared to the next best solution. $\textit{Refiner}$ is a plug-and-play solution that can be seamlessly integrated with RAG systems, facilitating its application across diverse open-source frameworks.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Parametric Retrieval Augmented Generation [32.29608109539912]
Parametric RAG is a new RAG paradigm that integrates external knowledge directly into the parameters of feed-forward networks.
It substantially enhances both the effectiveness and efficiency of knowledge augmentation in large language models.
arXiv Detail & Related papers (2025-01-27T10:04:49Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Grounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval [55.63711219190506]
Large language models (LLMs) often struggle with posing the right search queries.
We introduce $underlineLe$arning to $underlineRe$trieve by $underlineT$rying (LeReT)
LeReT can improve the absolute retrieval accuracy by up to 29% and the downstream generator evaluations by 17%.
arXiv Detail & Related papers (2024-10-30T17:02:54Z) - CuriousLLM: Elevating Multi-Document Question Answering with LLM-Enhanced Knowledge Graph Reasoning [0.9295048974480845]
We propose CuriousLLM, an enhancement that integrates a curiosity-driven reasoning mechanism into an LLM agent.
This mechanism enables the agent to generate relevant follow-up questions, thereby guiding the information retrieval process more efficiently.
Our experiments show that CuriousLLM significantly boosts LLM performance in multi-document question answering (MD-QA)
arXiv Detail & Related papers (2024-04-13T20:43:46Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowledge Conflicts? [45.233517779029334]
We identify whether responses are attributed to generated or retrieved contexts.
Experiments reveal a significant bias in several LLMs to favor generated contexts, even when they provide incorrect information.
arXiv Detail & Related papers (2024-01-22T12:54:04Z) - Compressing LLMs: The Truth is Rarely Pure and Never Simple [90.05366363633568]
Knowledge-Intensive Compressed LLM BenchmarK aims to redefine the evaluation protocol for compressed Large Language Models.
LLM-KICK unveils many favorable merits and unfortunate plights of current SoTA compression methods.
LLM-KICK is designed to holistically access compressed LLMs' ability for language understanding, reasoning, generation, in-context retrieval, in-context summarization, etc.
arXiv Detail & Related papers (2023-10-02T17:42:37Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.