Multi-Camera Hand-Eye Calibration for Human-Robot Collaboration in Industrial Robotic Workcells
- URL: http://arxiv.org/abs/2406.11392v1
- Date: Mon, 17 Jun 2024 10:23:30 GMT
- Title: Multi-Camera Hand-Eye Calibration for Human-Robot Collaboration in Industrial Robotic Workcells
- Authors: Davide Allegro, Matteo Terreran, Stefano Ghidoni,
- Abstract summary: In industrial scenarios, effective human-robot collaboration relies on multi-camera systems to robustly monitor human operators.
We introduce an innovative and robust multi-camera hand-eye calibration method, designed to optimize each camera's pose relative to both the robot's base and to each other camera.
We demonstrate the superior performance of our method through comprehensive experiments employing the METRIC dataset and real-world data collected on industrial scenarios.
- Score: 3.76054468268713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In industrial scenarios, effective human-robot collaboration relies on multi-camera systems to robustly monitor human operators despite the occlusions that typically show up in a robotic workcell. In this scenario, precise localization of the person in the robot coordinate system is essential, making the hand-eye calibration of the camera network critical. This process presents significant challenges when high calibration accuracy should be achieved in short time to minimize production downtime, and when dealing with extensive camera networks used for monitoring wide areas, such as industrial robotic workcells. Our paper introduces an innovative and robust multi-camera hand-eye calibration method, designed to optimize each camera's pose relative to both the robot's base and to each other camera. This optimization integrates two types of key constraints: i) a single board-to-end-effector transformation, and ii) the relative camera-to-camera transformations. We demonstrate the superior performance of our method through comprehensive experiments employing the METRIC dataset and real-world data collected on industrial scenarios, showing notable advancements over state-of-the-art techniques even using less than 10 images. Additionally, we release an open-source version of our multi-camera hand-eye calibration algorithm at https://github.com/davidea97/Multi-Camera-Hand-Eye-Calibration.git.
Related papers
- CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
Markerless pose estimation methods have eliminated the need for time-consuming physical setups for camera-to-robot calibration.
We propose a novel framework capable of estimating the robot pose with partially visible robot manipulators.
arXiv Detail & Related papers (2024-09-16T16:22:43Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
Hand-eye calibration involves estimating the transformation between the camera and the robot.
Recent advancements in deep learning offer markerless techniques, but they present challenges.
We propose Kalib, an automatic and universal markerless hand-eye calibration pipeline.
arXiv Detail & Related papers (2024-08-20T06:03:40Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Robot Hand-Eye Calibration using Structure-from-Motion [9.64487611393378]
We propose a new flexible method for hand-eye calibration.
We show that the solution can be obtained in linear form.
We conduct a large number of experiments which validate the quality of the method by comparing it with existing ones.
arXiv Detail & Related papers (2023-11-20T14:41:44Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
We present an extrinsic camera calibration approach that automatizes the parameter estimation by utilizing semantic segmentation information.
Our approach relies on a coarse initial measurement of the camera pose and builds on lidar sensors mounted on a vehicle.
We evaluate our method on simulated and real-world data to demonstrate low error measurements in the calibration results.
arXiv Detail & Related papers (2022-08-08T07:25:03Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
This paper presents the first direct calibration method between event cameras and lidars.
It removes dependencies on frame-based camera intermediaries and/or highly-accurate hand measurements.
arXiv Detail & Related papers (2022-07-03T11:05:45Z) - Multi Camera Placement via Z-buffer Rendering for the Optimization of
the Coverage and the Visual Hull [2.642698101441705]
A failure safe system needs to optimally cover the important areas of the robot work cell with safety overlap.
We propose an efficient algorithm for optimally placing and orienting the cameras in a 3D CAD model of the work cell.
The simulation allows to evaluate the quality with respect to the distortion of images and advanced image analysis in the presence of static and dynamic visual obstacles.
arXiv Detail & Related papers (2021-03-20T17:04:00Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.