Is Single-View Mesh Reconstruction Ready for Robotics?
- URL: http://arxiv.org/abs/2505.17966v1
- Date: Fri, 23 May 2025 14:35:56 GMT
- Title: Is Single-View Mesh Reconstruction Ready for Robotics?
- Authors: Frederik Nolte, Bernhard Schölkopf, Ingmar Posner,
- Abstract summary: This paper evaluates single-view mesh reconstruction models for creating digital twin environments in robot manipulation.<n>We establish benchmarking criteria for 3D reconstruction in robotics contexts.<n>Despite success on computer vision benchmarks, existing approaches fail to meet robotics-specific requirements.
- Score: 63.29645501232935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper evaluates single-view mesh reconstruction models for creating digital twin environments in robot manipulation. Recent advances in computer vision for 3D reconstruction from single viewpoints present a potential breakthrough for efficiently creating virtual replicas of physical environments for robotics contexts. However, their suitability for physics simulations and robotics applications remains unexplored. We establish benchmarking criteria for 3D reconstruction in robotics contexts, including handling typical inputs, producing collision-free and stable reconstructions, managing occlusions, and meeting computational constraints. Our empirical evaluation using realistic robotics datasets shows that despite success on computer vision benchmarks, existing approaches fail to meet robotics-specific requirements. We quantitively examine limitations of single-view reconstruction for practical robotics implementation, in contrast to prior work that focuses on multi-view approaches. Our findings highlight critical gaps between computer vision advances and robotics needs, guiding future research at this intersection.
Related papers
- RoboPearls: Editable Video Simulation for Robot Manipulation [81.18434338506621]
RoboPearls is an editable video simulation framework for robotic manipulation.<n>Built on 3D Gaussian Splatting (3DGS), RoboPearls enables the construction of photo-realistic, view-consistent simulations.<n>We conduct extensive experiments on multiple datasets and scenes, including RLBench, COLOSSEUM, Ego4D, Open X-Embodiment, and a real-world robot.
arXiv Detail & Related papers (2025-06-28T05:03:31Z) - CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
Markerless pose estimation methods have eliminated the need for time-consuming physical setups for camera-to-robot calibration.
We propose a novel framework capable of estimating the robot pose with partially visible robot manipulators.
arXiv Detail & Related papers (2024-09-16T16:22:43Z) - GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation [0.0]
GISR is a robot-to-camera pose estimation method that prioritizes execution in real-time.
We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy.
arXiv Detail & Related papers (2024-05-08T08:39:25Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
General-purpose robots operate seamlessly in any environment, with any object, and utilize various skills to complete diverse tasks.
As a community, we have been constraining most robotic systems by designing them for specific tasks, training them on specific datasets, and deploying them within specific environments.
Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models, we devote this survey to exploring how foundation models can be applied to general-purpose robotics.
arXiv Detail & Related papers (2023-12-14T10:02:55Z) - Challenges for Monocular 6D Object Pose Estimation in Robotics [12.037567673872662]
We provide a unified view on recent publications from both robotics and computer vision.
We find that occlusion handling, novel pose representations, and formalizing and improving category-level pose estimation are still fundamental challenges.
In order to address them, ontological reasoning, deformability handling, scene-level reasoning, realistic datasets, and the ecological footprint of algorithms need to be improved.
arXiv Detail & Related papers (2023-07-22T21:36:57Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Single-view robot pose and joint angle estimation via render & compare [40.05546237998603]
We introduce RoboPose, a method to estimate the joint angles and the 6D camera-to-robot pose of a known articulated robot from a single RGB image.
This is an important problem to grant mobile and itinerant autonomous systems the ability to interact with other robots.
arXiv Detail & Related papers (2021-04-19T14:48:29Z) - Amodal 3D Reconstruction for Robotic Manipulation via Stability and
Connectivity [3.359622001455893]
Learning-based 3D object reconstruction enables single- or few-shot estimation of 3D object models.
Existing 3D reconstruction techniques optimize for visual reconstruction fidelity, typically measured by chamfer distance or voxel IOU.
We propose ARM, an amodal 3D reconstruction system that introduces a stability prior over object shapes, (2) a connectivity prior, and (3) a multi-channel input representation.
arXiv Detail & Related papers (2020-09-28T08:52:54Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.