論文の概要: Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
- arxiv url: http://arxiv.org/abs/2406.11403v2
- Date: Tue, 04 Feb 2025 19:53:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:25:42.638655
- Title: Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
- Title(参考訳): CVPR第2回MMFMチャレンジ技術報告
- Authors: Franz Louis Cesista,
- Abstract要約: マルチモーダル・ファンデーション・モデル (MMFM) はコンピュータビジョンと自然言語処理の両方において強力な性能を示している。
我々は,MMFMに厳密な構造化形式で出力を出力させる(凍結)フレームワークであるMultimodal Structured Generationを提案する。
CVPR 2nd MMFM Challengeにおいて,本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multimodal Foundation Models (MMFMs) have demonstrated strong performance in both computer vision and natural language processing tasks. However, their performance diminishes in tasks that require a high degree of integration between these modalities, such as document understanding. Moreover, finetuning these models and deploying them requires significantly more compute and more engineering effort than unimodal models. In this work, we present Multimodal Structured Generation, a framework that forces (frozen) MMFMs to produce outputs in a strictly structured format by applying hard constraints directly to the output logits. This approach not only ensures that the model generates parseable outputs that downstream APIs can easily ingest but also allows us to force the model to reason before answering, which significantly boosts performance without the need for expensive fine-tuning. We demonstrate the effectiveness of our method through competitive results in the CVPR 2nd MMFM Challenge, highlighting that carefully designed lightweight engineering can outperform expensive and complicated modeling approaches. All of our scripts, deployment steps, and evaluation results can be accessed in https://github.com/leloykun/MMFM-Challenge
- Abstract(参考訳): マルチモーダル・ファンデーション・モデル (MMFM) はコンピュータビジョンと自然言語処理の両方において強力な性能を示している。
しかし、それらのパフォーマンスは、文書理解のようなこれらのモダリティ間の高度な統合を必要とするタスクにおいて低下する。
さらに、これらのモデルを微調整してデプロイするには、ユニモーダルモデルよりも計算量とエンジニアリングの労力がかなり必要になります。
本稿では,MMFMに厳密な構造化形式で出力を強制するフレームワークであるMultimodal Structured Generationを提案する。
このアプローチは、ダウンストリームAPIが容易に取り込むことができるパース可能な出力を生成するだけでなく、応答前にモデルに推論を強制することを可能にします。
CVPR 2nd MMFM Challengeにおいて,提案手法の有効性を示すとともに,設計した軽量工学が高価で複雑なモデリング手法よりも優れていることを示す。
私たちのスクリプト、デプロイメントステップ、評価結果は、https://github.com/leloykun/MMFM-Challengeでアクセスできます。
関連論文リスト
- ContextFormer: Redefining Efficiency in Semantic Segmentation [46.06496660333768]
畳み込み法は、局所的な依存関係をうまく捉えるが、長距離関係に苦慮する。
ビジョントランスフォーマー(ViT)は、グローバルなコンテキストキャプチャでは優れるが、高い計算要求によって妨げられる。
我々は,リアルタイムセマンティックセグメンテーションの効率,精度,堅牢性のバランスをとるために,CNN と ViT の強みを活用したハイブリッドフレームワーク ContextFormer を提案する。
論文 参考訳(メタデータ) (2025-01-31T16:11:04Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtendは、Mixture-of-Experts (MoE)モデルのモダリティ適応と拡張を効率化する効果的なフレームワークである。
MoExtendは、新しいエキスパートをトレーニング済みのMoEモデルにシームレスに統合し、トレーニング済みのモデルをチューニングすることなく、新しい知識を提供する。
論文 参考訳(メタデータ) (2024-08-07T02:28:37Z) - Jointly Training Large Autoregressive Multimodal Models [37.32912103934043]
本稿では,既存のテキストと画像生成モデルを体系的に融合するモジュール方式であるJAMフレームワークを提案する。
また、混合モーダル生成タスクに適した、特殊的でデータ効率の高い命令チューニング戦略も導入する。
最後のインストラクションチューニングモデルは、高品質なマルチモーダル出力を生成する際の非並列性能を示す。
論文 参考訳(メタデータ) (2023-09-27T10:40:23Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
大規模言語モデル(LLM)は、自然言語処理において多くの最先端システムに電力を供給する。
LLMは、推論時でさえ非常に計算コストが高い。
モデル間での推論効率を比較するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-05-03T21:51:42Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。