論文の概要: PrAViC: Probabilistic Adaptation Framework for Real-Time Video Classification
- arxiv url: http://arxiv.org/abs/2406.11443v2
- Date: Wed, 13 Aug 2025 09:09:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.44005
- Title: PrAViC: Probabilistic Adaptation Framework for Real-Time Video Classification
- Title(参考訳): PrAViC:リアルタイムビデオ分類のための確率的適応フレームワーク
- Authors: Magdalena Trędowicz, Marcin Mazur, Szymon Janusz, Arkadiusz Lewicki, Jacek Tabor, Łukasz Struski,
- Abstract要約: PrAViCは、ビデオデータのオンライン分類問題に取り組むための、新しい、統一的で理論に基づく適応フレームワークである。
PrAViCは、既存の最先端のオフラインおよびオンラインモデルとデータセットを比較して評価する。
- 参考スコア(独自算出の注目度): 7.380324916960336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video processing is generally divided into two main categories: processing of the entire video, which typically yields optimal classification outcomes, and real-time processing, where the objective is to make a decision as promptly as possible. Although the models dedicated to the processing of entire videos are typically well-defined and clearly presented in the literature, this is not the case for online processing, where a~plethora of hand-devised methods exist. To address this issue, we present PrAViC, a novel, unified, and theoretically-based adaptation framework for tackling the online classification problem in video data. The initial phase of our study is to establish a mathematical background for the classification of sequential data, with the potential to make a decision at an early stage. This allows us to construct a natural function that encourages the model to return a result much faster. The subsequent phase is to present a straightforward and readily implementable method for adapting offline models to the online setting using recurrent operations. Finally, PrAViC is evaluated by comparing it with existing state-of-the-art offline and online models and datasets. This enables the network to significantly reduce the time required to reach classification decisions while maintaining, or even enhancing, accuracy.
- Abstract(参考訳): ビデオ処理は一般的に2つの主要なカテゴリに分けられる: ビデオ全体の処理は、通常最適な分類結果をもたらすもので、リアルタイム処理は、できるだけ迅速に意思決定することを目的としている。
ビデオ全体の処理専用のモデルは、典型的にはよく定義され、文献で明確に提示されるが、これはオンライン処理には当てはまらない。
この問題に対処するために,ビデオデータにおけるオンライン分類問題に対処するための,新しい,統一的で理論に基づく適応フレームワークPrAViCを提案する。
本研究の最初の段階は,早期に決定を下す可能性を秘め,逐次データ分類の数学的背景を確立することである。
これにより、モデルが結果を返すのをずっと早く促す自然な関数を構築することができます。
その後のフェーズでは、オフラインモデルをリカレント操作を使用してオンライン設定に適応するための、簡単かつ容易に実装可能な方法を提案する。
最後にPrAViCは、既存の最先端のオフラインおよびオンラインモデルとデータセットを比較して評価する。
これにより、ネットワークは分類決定に到達するのに要する時間を著しく削減し、正確性を維持したり、強化したりすることができる。
関連論文リスト
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
モデル適応のための統一フレームワークとして,ニューラルネットワークの再プログラム可能性を導入する。
本稿では,4つの重要な側面にまたがる情報操作アプローチを分類する分類法を提案する。
残る技術的課題や倫理的考察も分析する。
論文 参考訳(メタデータ) (2025-06-05T05:42:27Z) - SEVERE++: Evaluating Benchmark Sensitivity in Generalization of Video Representation Learning [78.44705665291741]
本稿では,現代ビデオの自己教師型モデルの包括的評価について述べる。
ドメインシフト、サンプル効率、アクションの粒度、タスクの多様性の4つの重要な下流因子の一般化に焦点を当てる。
我々の分析は、アーキテクチャの進歩にもかかわらず、トランスフォーマーベースのモデルは下流の条件に敏感であることを示している。
論文 参考訳(メタデータ) (2025-04-08T06:00:28Z) - Bayesian Test-Time Adaptation for Vision-Language Models [51.93247610195295]
CLIPのような事前訓練された視覚言語モデルによるテスト時適応は、新しい、潜在的に配布外テストデータにモデルを適応させることを目的としている。
我々は、クラス埋め込みを継続的に更新して妥当性を適応させる新しいアプローチ、textbfBayesian textbfClass textbfAdaptation (BCA)を提案する。
論文 参考訳(メタデータ) (2025-03-12T10:42:11Z) - Random Representations Outperform Online Continually Learned Representations [68.42776779425978]
既存のオンライン学習深層ネットワークは、単純な事前定義されたランダム変換に比べて劣った表現を生成することを示す。
我々の手法はRanDumbと呼ばれ、あらゆるオンライン連続学習ベンチマークにおいて、最先端の学習表現を著しく上回っている。
本研究は, 表現学習の大きな限界, 特に低経験, オンライン連続学習のシナリオについて明らかにした。
論文 参考訳(メタデータ) (2024-02-13T22:07:29Z) - Adaptive Training Distributions with Scalable Online Bilevel
Optimization [26.029033134519604]
Webスケールコーパスで事前訓練された大規模なニューラルネットワークは、現代の機械学習の中心である。
本研究は,対象とする試験条件を反映したデータのサンプルが少なければ,事前学習分布を変更することを検討する。
本稿では、この設定をオンライン二段階最適化問題として最近定式化したアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-20T18:01:29Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
時間的ネットワーク上での機械学習の方法は、一般的に2つの制限のうちの少なくとも1つを示す。
ネットワークのライングラフは,各インタラクションのノードを含むもので,インタラクション間の時間差に基づいて,このグラフのエッジを重み付けする。
実世界のネットワークにおける実験結果から,エッジ分類と時間リンク予測の両方において,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-09-30T18:24:13Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - AuxAdapt: Stable and Efficient Test-Time Adaptation for Temporally
Consistent Video Semantic Segmentation [81.87943324048756]
ビデオセグメンテーションでは、フレーム間で時間的に一貫した結果を生成することは、フレームワイドの精度を達成するのと同じくらい重要である。
既存の方法は、時間的整合性を達成するために、テストデータによる光フローの正則化や微調整に依存している。
本稿では、ほとんどのニューラルネットワークモデルの時間的一貫性を改善するために、効率的で直感的で教師なしのオンライン適応手法であるAuxAdaptを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:07:41Z) - Network Estimation by Mixing: Adaptivity and More [2.3478438171452014]
我々は、利用可能な任意のモデルを利用して、個々のパフォーマンスを改善する混合戦略を提案する。
提案手法は計算効率が高く,チューニングがほとんどない。
提案手法は,真のモデルが個々の候補に含まれる場合のオラクル推定と同等に動作することを示す。
論文 参考訳(メタデータ) (2021-06-05T05:17:04Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - A Flexible Selection Scheme for Minimum-Effort Transfer Learning [27.920304852537534]
ファインチューニングは、トレーニング済みの畳み込みネットワークに含まれる知識を活用して、新しい視覚認識タスクを実現する方法として人気がある。
フレキシブルチューニング(flex-tuning)と呼ばれる,ネットワークの個々のユニットをチューニング可能な,新たなファインチューニング方式を導入する。
微調整された個々のユニットは、その単純さにもかかわらず、適応手法として非常に良い結果が得られることを示す。
論文 参考訳(メタデータ) (2020-08-27T08:57:30Z) - Fast Template Matching and Update for Video Object Tracking and
Segmentation [56.465510428878]
私たちが取り組もうとしている主な課題は、フレームの列にまたがるマルチインスタンスの半教師付きビデオオブジェクトセグメンテーションである。
課題は、結果を予測するためのマッチングメソッドの選択と、ターゲットテンプレートを更新するかどうかを決定することである。
本稿では,これら2つの決定を同時に行うために,強化学習を利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-04-16T08:58:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。