論文の概要: Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms
- arxiv url: http://arxiv.org/abs/2406.11481v1
- Date: Mon, 17 Jun 2024 12:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:51:50.299154
- Title: Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms
- Title(参考訳): 平均逆対象による制約付き強化学習:モデルベースおよびモデルフリーアルゴリズム
- Authors: Vaneet Aggarwal, Washim Uddin Mondal, Qinbo Bai,
- Abstract要約: モノグラフは、平均報酬決定過程(MDPs)の文脈内で制約された様々なモデルベースおよびモデルフリーアプローチの探索に焦点を当てている
このアルゴリズムは制約付きMDPの解法として検討されている。
- 参考スコア(独自算出の注目度): 34.593772931446125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) serves as a versatile framework for sequential decision-making, finding applications across diverse domains such as robotics, autonomous driving, recommendation systems, supply chain optimization, biology, mechanics, and finance. The primary objective in these applications is to maximize the average reward. Real-world scenarios often necessitate adherence to specific constraints during the learning process. This monograph focuses on the exploration of various model-based and model-free approaches for Constrained RL within the context of average reward Markov Decision Processes (MDPs). The investigation commences with an examination of model-based strategies, delving into two foundational methods - optimism in the face of uncertainty and posterior sampling. Subsequently, the discussion transitions to parametrized model-free approaches, where the primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs. The monograph provides regret guarantees and analyzes constraint violation for each of the discussed setups. For the above exploration, we assume the underlying MDP to be ergodic. Further, this monograph extends its discussion to encompass results tailored for weakly communicating MDPs, thereby broadening the scope of its findings and their relevance to a wider range of practical scenarios.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、ロボット工学、自律運転、レコメンデーションシステム、サプライチェーン最適化、生物学、メカニクス、ファイナンスなど、さまざまな分野にまたがる応用を見つける、シーケンシャルな意思決定のための汎用的なフレームワークとして機能する。
これらのアプリケーションの主な目的は、平均的な報酬を最大化することです。
現実世界のシナリオは、学習プロセス中に特定の制約に固執する必要があることが多い。
このモノグラフは、平均報酬マルコフ決定過程(MDP)の文脈における制約付きRLに対する様々なモデルベースおよびモデルフリーアプローチの探索に焦点を当てている。
調査はモデルに基づく戦略の検証から始まり、不確実性に直面した楽観主義と後続サンプリングという2つの基礎的手法を掘り下げる。
その後、この議論はパラメタライズドモデルフリーアプローチに移行し、そこでは、制約付きMDPの解として、原始双対ポリシー勾配に基づくアルゴリズムを探索する。
モノグラフは後悔の保証を提供し、議論された各設定に対する制約違反を分析します。
以上の調査では,基礎となるMDPがエルゴディックであると仮定する。
さらに、このモノグラフは、MDPの弱い通信に適した結果を含むように議論を拡張し、その結果の範囲を広げ、より広い範囲の実践シナリオとの関連性を広げる。
関連論文リスト
- Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
強化学習における探索問題について検討し,新しいモデルフリーソリューションを提案する。
我々の戦略は、最先端の探査アプローチよりも高速に効率的な政策を特定できる。
論文 参考訳(メタデータ) (2024-06-30T19:00:49Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - POMDP inference and robust solution via deep reinforcement learning: An
application to railway optimal maintenance [0.7046417074932257]
深部RLを用いたPMDPの推論とロバストな解法の組み合わせを提案する。
まず、すべての遷移モデルと観測モデルパラメータは、隠れマルコフモデルのマルコフ・チェイン・モンテ・カルロサンプリングによって共同で推論される。
パラメータが不確実なPOMDPは、パラメータ分布を領域ランダム化によって解に組み込んだ深部RL手法によって解決される。
論文 参考訳(メタデータ) (2023-07-16T15:44:58Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
未測定の共同設立者を対象にオフライン強化学習(RL)について検討した。
そこで本稿では, 最適クラスポリシーを見つけるための, 有限サンプルの準最適性を保証した多種多様なポリシー学習手法を提案する。
論文 参考訳(メタデータ) (2022-09-18T22:03:55Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Bayesian regularization of empirical MDPs [11.3458118258705]
ベイズ的な視点を採り、マルコフ決定プロセスの目的関数を事前情報で正規化する。
提案するアルゴリズムは,大規模オンラインショッピングストアの合成シミュレーションと実世界の検索ログに基づいて評価する。
論文 参考訳(メタデータ) (2022-08-03T22:02:50Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - An Offline Risk-aware Policy Selection Method for Bayesian Markov
Decision Processes [0.0]
Exploitation vs. Caution (EvC) はベイズ形式主義のモデル不確実性をエレガントに取り入れたパラダイムである。
我々は,多種多様なMDPクラスを提供する異なる離散的かつシンプルな環境において,最先端のアプローチでEvCを検証する。
テストシナリオでは、EvCは堅牢なポリシーを選択することができ、実践者にとって有用なツールとして際立っている。
論文 参考訳(メタデータ) (2021-05-27T20:12:20Z) - Learning with Safety Constraints: Sample Complexity of Reinforcement
Learning for Constrained MDPs [13.922754427601491]
我々は,安全性の制約と,所望の精度を確保するために必要なサンプル数との関係を特徴付ける。
我々の主な発見は、制約のない状態の最もよく知られた境界と比較して、制約されたRLアルゴリズムのサンプルは制約の数に対数的な因子によって増加することである。
論文 参考訳(メタデータ) (2020-08-01T18:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。