GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement
- URL: http://arxiv.org/abs/2406.11546v1
- Date: Mon, 17 Jun 2024 13:44:20 GMT
- Title: GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement
- Authors: Yifan Yang, Zheshu Song, Jianheng Zhuo, Mingyu Cui, Jinpeng Li, Bo Yang, Yexing Du, Ziyang Ma, Xunying Liu, Ziyuan Wang, Ke Li, Shuai Fan, Kai Yu, Wei-Qiang Zhang, Guoguo Chen, Xie Chen,
- Abstract summary: GigaSpeech 2 is a large-scale, multi-domain, multilingual speech recognition corpus.
It comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese.
- Score: 36.29371629234269
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.
Related papers
- Multi-modal Adversarial Training for Zero-Shot Voice Cloning [9.823246184635103]
We propose a Transformer encoder-decoder architecture to conditionally discriminate between real and generated speech features.
We introduce our novel adversarial training technique by applying it to a FastSpeech2 acoustic model and training on Libriheavy, a large multi-speaker dataset.
Our model achieves improvements over the baseline in terms of speech quality and speaker similarity.
arXiv Detail & Related papers (2024-08-28T16:30:41Z) - SeamlessM4T: Massively Multilingual & Multimodal Machine Translation [90.71078166159295]
We introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-text translation, and automatic speech recognition for up to 100 languages.
We developed the first multilingual system capable of translating from and into English for both speech and text.
On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation.
arXiv Detail & Related papers (2023-08-22T17:44:18Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
We develop NaturalSpeech 2, a TTS system that leverages a neural audio predictor with residual vectorizers to get the quantized latent vectors.
We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers.
NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, synthesis, and voice quality in a zero-shot setting.
arXiv Detail & Related papers (2023-04-18T16:31:59Z) - A Weakly-Supervised Streaming Multilingual Speech Model with Truly
Zero-Shot Capability [32.524627464837636]
Streaming Multilingual Speech Model (SM2) can transcribe or translate multiple spoken languages into texts of the target language.
SM2 models are trained using weakly supervised data generated by converting the transcriptions in speech recognition corpora with a machine translation service.
With 351 thousand hours of anonymized speech training data from 25 languages, SM2 models achieve comparable or even better ST quality than some recent popular large-scale non-streaming speech models.
arXiv Detail & Related papers (2022-11-04T14:59:55Z) - Textless Speech-to-Speech Translation on Real Data [49.134208897722246]
We present a textless speech-to-speech translation (S2ST) system that can translate speech from one language into another language.
We tackle the challenge in modeling multi-speaker target speech and train the systems with real-world S2ST data.
arXiv Detail & Related papers (2021-12-15T18:56:35Z) - Dynamic Acoustic Unit Augmentation With BPE-Dropout for Low-Resource
End-to-End Speech Recognition [62.94773371761236]
We consider building an effective end-to-end ASR system in low-resource setups with a high OOV rate.
We propose a method of dynamic acoustic unit augmentation based on the BPE-dropout technique.
Our monolingual Turkish Conformer established a competitive result with 22.2% character error rate (CER) and 38.9% word error rate (WER)
arXiv Detail & Related papers (2021-03-12T10:10:13Z) - Applying Wav2vec2.0 to Speech Recognition in Various Low-resource
Languages [16.001329145018687]
In the speech domain, wav2vec2.0 starts to show its powerful representation ability and feasibility of ultra-low resource speech recognition on the Librispeech corpus.
However, wav2vec2.0 has not been examined on real spoken scenarios and languages other than English.
We apply pre-trained models to solve low-resource speech recognition tasks in various spoken languages.
arXiv Detail & Related papers (2020-12-22T15:59:44Z) - LRSpeech: Extremely Low-Resource Speech Synthesis and Recognition [148.43282526983637]
We develop LRSpeech, a TTS and ASR system for languages with low data cost.
We conduct experiments on an experimental language (English) and a truly low-resource language (Lithuanian) to verify the effectiveness of LRSpeech.
We are currently deploying LRSpeech into a commercialized cloud speech service to support TTS on more rare languages.
arXiv Detail & Related papers (2020-08-09T08:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.