Long Code Arena: a Set of Benchmarks for Long-Context Code Models
- URL: http://arxiv.org/abs/2406.11612v1
- Date: Mon, 17 Jun 2024 14:58:29 GMT
- Title: Long Code Arena: a Set of Benchmarks for Long-Context Code Models
- Authors: Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin, Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, Timofey Bryksin,
- Abstract summary: Long Code Arena is a suite of six benchmarks for code processing tasks that require project-wide context.
These tasks cover different aspects of code processing: library-based code generation, CI builds repair, project-level code completion, commit message generation, bug localization, and module summarization.
For each task, we provide a manually verified dataset for testing, an evaluation suite, and open-source baseline solutions.
- Score: 75.70507534322336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, the fields of code and natural language processing are evolving rapidly. In particular, models become better at processing long context windows - supported context sizes have increased by orders of magnitude over the last few years. However, there is a shortage of benchmarks for code processing that go beyond a single file of context, while the most popular ones are limited to a single method. With this work, we aim to close this gap by introducing Long Code Arena, a suite of six benchmarks for code processing tasks that require project-wide context. These tasks cover different aspects of code processing: library-based code generation, CI builds repair, project-level code completion, commit message generation, bug localization, and module summarization. For each task, we provide a manually verified dataset for testing, an evaluation suite, and open-source baseline solutions based on popular LLMs to showcase the usage of the dataset and to simplify adoption by other researchers. We publish the benchmark page on HuggingFace Spaces with the leaderboard, links to HuggingFace Hub for all the datasets, and link to the GitHub repository with baselines: https://huggingface.co/spaces/JetBrains-Research/long-code-arena.
Related papers
- Steering Large Language Models between Code Execution and Textual Reasoning [22.279107036500083]
Textual reasoning has inherent limitations in solving tasks with challenges in math, logics, optimization, and searching.
The recently released OpenAI GPT Code Interpreter and multi-agent frameworks such as AutoGen have demonstrated remarkable proficiency of integrating code generation and execution.
We propose three methods to better steer LLM code/text generation and achieve a notable improvement.
arXiv Detail & Related papers (2024-10-04T15:44:47Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.
We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.
We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - LongCoder: A Long-Range Pre-trained Language Model for Code Completion [56.813974784131624]
LongCoder employs a sliding window mechanism for self-attention and introduces two types of globally accessible tokens.
Bridge tokens are inserted throughout the input sequence to aggregate local information and facilitate global interaction.
memory tokens are included to highlight important statements that may be invoked later and need to be memorized.
arXiv Detail & Related papers (2023-06-26T17:59:24Z) - Generation-Augmented Query Expansion For Code Retrieval [51.20943646688115]
We propose a generation-augmented query expansion framework.
Inspired by the human retrieval process - sketching an answer before searching.
We achieve new state-of-the-art results on the CodeSearchNet benchmark.
arXiv Detail & Related papers (2022-12-20T23:49:37Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z) - Long-Range Modeling of Source Code Files with eWASH: Extended Window
Access by Syntax Hierarchy [30.368963500809365]
We introduce an architecture-independent approach for leveraging entire file-level context into a fixed-length window.
We evaluate this approach on code generation tasks and joint translation of natural language and source code in Python programming language.
arXiv Detail & Related papers (2021-09-17T23:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.