論文の概要: Words in Motion: Representation Engineering for Motion Forecasting
- arxiv url: http://arxiv.org/abs/2406.11624v1
- Date: Mon, 17 Jun 2024 15:07:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:12:50.376266
- Title: Words in Motion: Representation Engineering for Motion Forecasting
- Title(参考訳): 動きの言葉:動き予測のための表現工学
- Authors: Omer Sahin Tas, Royden Wagner,
- Abstract要約: 動き予測は過去の動きと環境コンテキストのシーケンスを将来の動きに変換する。
近年の手法は学習された表現に依存しており、解釈が難しい隠された状態をもたらす。
自然言語を用いて、人間の解釈可能な方法で動きの特徴を定量化し、それらが隠れた状態に埋め込まれている度合いを測定する。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion forecasting transforms sequences of past movements and environment context into future motion. Recent methods rely on learned representations, resulting in hidden states that are difficult to interpret. In this work, we use natural language to quantize motion features in a human-interpretable way, and measure the degree to which they are embedded in hidden states. Our experiments reveal that hidden states of motion sequences are arranged with respect to our discrete sets of motion features. Following these insights, we fit control vectors to motion features, which allow for controlling motion forecasts at inference. Consequently, our method enables controlling transformer-based motion forecasting models with textual inputs, providing a unique interface to interact with and understand these models. Our implementation is available at https://github.com/kit-mrt/future-motion
- Abstract(参考訳): 動き予測は過去の動きと環境コンテキストのシーケンスを将来の動きに変換する。
近年の手法は学習された表現に依存しており、解釈が難しい隠された状態をもたらす。
本研究では、自然言語を用いて人間の解釈可能な動作特徴を定量化し、それらが隠れた状態に埋め込まれている度合いを測定する。
実験の結果, 運動列の隠れ状態は, 個々の運動特徴集合に対して配置されていることがわかった。
これらの知見に従えば、制御ベクトルを運動特徴に適合させ、推論時の動作予測を制御することができる。
そこで本手法では,テキスト入力によるトランスフォーマーに基づく動き予測モデルを制御可能とし,これらのモデルと対話し,理解するためのユニークなインタフェースを提供する。
私たちの実装はhttps://github.com/kit-mrt/future-motionで利用可能です。
関連論文リスト
- Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models [55.19497659895122]
本稿ではスパース特徴回路の発見と適用方法を紹介する。
これらは言語モデルの振る舞いを説明するための人間の解釈可能な特徴の因果関係の著作である。
論文 参考訳(メタデータ) (2024-03-28T17:56:07Z) - Humanoid Locomotion as Next Token Prediction [84.21335675130021]
我々のモデルは感覚運動軌道の自己回帰予測によって訓練された因果変換器である。
われわれのモデルでは、フルサイズのヒューマノイドがサンフランシスコでゼロショットで歩けることが示されている。
われわれのモデルは、わずか27時間の歩行データで訓練された場合でも現実世界に移行でき、後方歩行のような訓練中に見えないコマンドを一般化することができる。
論文 参考訳(メタデータ) (2024-02-29T18:57:37Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotionは、多種多様な視覚的手がかりを利用して人間の行動を予測する、汎用トランスフォーマーベースのモデルである。
提案手法は,JTA,JRDB,歩行者,道路交通のサイクリスト,ETH-UCYなど,複数のデータセットで検証されている。
論文 参考訳(メタデータ) (2023-12-26T18:56:49Z) - LeTFuser: Light-weight End-to-end Transformer-Based Sensor Fusion for
Autonomous Driving with Multi-Task Learning [16.241116794114525]
本稿では,複数のRGB-Dカメラ表現を融合させるアルゴリズムであるLeTFuserを紹介する。
認識と制御を同時に行うためには,マルチタスク学習を利用する。
論文 参考訳(メタデータ) (2023-10-19T20:09:08Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - VISIT: Visualizing and Interpreting the Semantic Information Flow of
Transformers [45.42482446288144]
近年の解釈可能性の進歩は、トランスフォーマーベース言語モデルの重みと隠れ状態を語彙に投影できることを示唆している。
LMアテンションヘッドとメモリ値、モデルが与えられた入力を処理しながら動的に生成し、リコールするベクトルについて検討する。
対話型フローグラフとして生成事前学習変換器(GPT)の前方通過を可視化するツールを作成する。
論文 参考訳(メタデータ) (2023-05-22T19:04:56Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
本研究では、モーションキャプチャー(MoCap)シーケンスを用いた人間の行動認識の問題点について検討する。
メッシュシーケンスを直接モデル化する新しい時空間メッシュ変換器(STMT)を提案する。
提案手法は,スケルトンベースモデルやポイントクラウドベースモデルと比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-31T16:19:27Z) - Extracting Latent Steering Vectors from Pretrained Language Models [14.77762401765532]
本研究では,言語モデルデコーダから直接潜在ベクトルを抽出できることを示す。
実験により、ステアリングベクトルが存在し、それが言語モデルの隠れ状態に追加されると、ほぼ完璧にターゲット文を生成することが示された。
テキスト類似度ベンチマークで評価すると, ステアリングベクトル間の距離が文類似度を反映していることが分かる。
論文 参考訳(メタデータ) (2022-05-10T19:04:37Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Inverse reinforcement learning for autonomous navigation via
differentiable semantic mapping and planning [20.66819092398541]
本稿では,距離と意味カテゴリー観測を用いた自律ナビゲーションのための逆強化学習について述べる。
観測シーケンスから意味的カテゴリ確率を推測するマップエンコーダと、意味論的特徴に対するディープニューラルネットワークとして定義されるコストエンコーダを開発している。
本研究では,建物,歩道,路面のセマンティックな観察に頼って,自律走行型CARLAシミュレータの交通ルールを追従する手法を提案する。
論文 参考訳(メタデータ) (2021-01-01T07:41:08Z) - Learning Navigation Costs from Demonstration with Semantic Observations [24.457042947946025]
本稿では,自律型ロボットナビゲーションにおける意味的観察を用いた逆強化学習(IRL)に焦点を当てた。
観測シーケンスからセマンティッククラス確率を推定するマップエンコーダと、セマンティックな特徴よりもディープニューラルネットワークとして定義されるコストエンコーダを開発する。
提案手法は,自動車,歩道,道路路面のセマンティックな観察に頼って,自律走行CARLAシミュレータにおける交通ルールに従うことを学習していることを示す。
論文 参考訳(メタデータ) (2020-06-09T04:35:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。