Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities
- URL: http://arxiv.org/abs/2406.11636v2
- Date: Sat, 20 Jul 2024 12:09:46 GMT
- Title: Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities
- Authors: Felix Wagner, Wentian Xu, Pramit Saha, Ziyun Liang, Daniel Whitehouse, David Menon, Virginia Newcombe, Natalie Voets, J. Alison Noble, Konstantinos Kamnitsas,
- Abstract summary: Models for brain lesions in MRI are commonly developed for a specific disease and trained on data with a predefined set of MRI modalities.
Each such model cannot segment the disease using data with a different set of MRI modalities, nor can it segment any other type of disease.
We show that Federated Learning framework can train a single model that is shown to be very promising in segmenting all disease types seen during training.
- Score: 5.629645463085369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation models for brain lesions in MRI are commonly developed for a specific disease and trained on data with a predefined set of MRI modalities. Each such model cannot segment the disease using data with a different set of MRI modalities, nor can it segment any other type of disease. Moreover, this training paradigm does not allow a model to benefit from learning from heterogeneous databases that may contain scans and segmentation labels for different types of brain pathologies and diverse sets of MRI modalities. Additionally, the sensitivity of patient data often prevents centrally aggregating data, necessitating a decentralized approach. Is it feasible to use Federated Learning (FL) to train a single model on client databases that contain scans and labels of different brain pathologies and diverse sets of MRI modalities? We demonstrate promising results by combining appropriate, simple, and practical modifications to the model and training strategy: Designing a model with input channels that cover the whole set of modalities available across clients, training with random modality drop, and exploring the effects of feature normalization methods. Evaluation on 7 brain MRI databases with 5 different diseases shows that such FL framework can train a single model that is shown to be very promising in segmenting all disease types seen during training. Importantly, it is able to segment these diseases in new databases that contain sets of modalities different from those in training clients. These results demonstrate, for the first time, the feasibility and effectiveness of using Federated Learning to train a single 3D segmentation model on decentralised data with diverse brain diseases and MRI modalities, a necessary step towards leveraging heterogeneous real-world databases. Code will be made available at: https://github.com/FelixWag/FL-MultiDisease-MRI
Related papers
- UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORN is a multi-modal transformer capable of processing multi-stain histopathology for atherosclerosis severity class prediction.
The architecture comprises a two-stage, end-to-end trainable model with specialized modules utilizing transformer self-attention blocks.
UNICORN achieved a classification accuracy of 0.67, outperforming other state-of-the-art models.
arXiv Detail & Related papers (2024-09-26T12:13:52Z) - Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation [2.7575121770012503]
We show that joint training on multi-modal MRI databases with different brain pathologies and sets of modalities is feasible and offers practical benefits.
It enables a single model to segment pathologies encountered during training in diverse sets of modalities.
arXiv Detail & Related papers (2024-05-28T18:28:10Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - SMU-Net: Style matching U-Net for brain tumor segmentation with missing
modalities [4.855689194518905]
We propose a style matching U-Net (SMU-Net) for brain tumour segmentation on MRI images.
Our co-training approach utilizes a content and style-matching mechanism to distill the informative features from the full-modality network into a missing modality network.
Our style matching module adaptively recalibrates the representation space by learning a matching function to transfer the informative and textural features from a full-modality path into a missing-modality path.
arXiv Detail & Related papers (2022-04-06T17:55:19Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
To train a high-quality deep learning model, the aggregation of a significant amount of patient information is required.
Due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions.
Federated learning allows for population-level models to be trained without centralizing entities' data.
arXiv Detail & Related papers (2020-01-16T04:49:33Z) - Meta-modal Information Flow: A Method for Capturing Multimodal Modular
Disconnectivity in Schizophrenia [11.100316178148994]
We introduce a method that takes advantage of multimodal data in addressing the hypotheses of disconnectivity and dysfunction within schizophrenia (SZ)
We propose a modularity-based method that can be applied to the GGM to identify links that are associated with mental illness across a multimodal data set.
Through simulation and real data, we show our approach reveals important information about disease-related network disruptions that are missed with a focus on a single modality.
arXiv Detail & Related papers (2020-01-06T18:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.