Making Old Things New: A Unified Algorithm for Differentially Private Clustering
- URL: http://arxiv.org/abs/2406.11649v1
- Date: Mon, 17 Jun 2024 15:31:53 GMT
- Title: Making Old Things New: A Unified Algorithm for Differentially Private Clustering
- Authors: Max Dupré la Tour, Monika Henzinger, David Saulpic,
- Abstract summary: We show that a 20-year-old algorithm can be slightly modified to work for any of these models.
This provides a unified picture: while matching almost all previously known results, it allows us to improve some of them.
- Score: 6.320600791108065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a staple of data analysis and unsupervised learning, the problem of private clustering has been widely studied under various privacy models. Centralized differential privacy is the first of them, and the problem has also been studied for the local and the shuffle variation. In each case, the goal is to design an algorithm that computes privately a clustering, with the smallest possible error. The study of each variation gave rise to new algorithms: the landscape of private clustering algorithms is therefore quite intricate. In this paper, we show that a 20-year-old algorithm can be slightly modified to work for any of these models. This provides a unified picture: while matching almost all previously known results, it allows us to improve some of them and extend it to a new privacy model, the continual observation setting, where the input is changing over time and the algorithm must output a new solution at each time step.
Related papers
- Differential privacy and Sublinear time are incompatible sometimes [12.776401866635844]
We show that a simple problem based on one-way marginals yields both a differentially-private algorithm and a sublinear-time algorithm.
We do not admit a strictly'' sublinear-time algorithm that is also differentially private.
arXiv Detail & Related papers (2024-07-09T22:33:57Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Minimalistic Predictions to Schedule Jobs with Online Precedence
Constraints [117.8317521974783]
We consider non-clairvoyant scheduling with online precedence constraints.
An algorithm is oblivious to any job dependencies and learns about a job only if all of its predecessors have been completed.
arXiv Detail & Related papers (2023-01-30T13:17:15Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Stochastic Differentially Private and Fair Learning [7.971065005161566]
We provide the first differentially private algorithm for fair learning that is guaranteed to converge.
Our framework is flexible enough to permit different fairness, including demographic parity and equalized odds.
Our algorithm can be applied to non-binary classification tasks with multiple (non-binary) sensitive attributes.
arXiv Detail & Related papers (2022-10-17T06:54:57Z) - Differentially Private Correlation Clustering [23.93805663525436]
Correlation clustering is a widely used technique in unsupervised machine learning.
Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering.
arXiv Detail & Related papers (2021-02-17T17:27:48Z) - A Systematic Characterization of Sampling Algorithms for Open-ended
Language Generation [71.31905141672529]
We study the widely adopted ancestral sampling algorithms for auto-regressive language models.
We identify three key properties that are shared among them: entropy reduction, order preservation, and slope preservation.
We find that the set of sampling algorithms that satisfies these properties performs on par with the existing sampling algorithms.
arXiv Detail & Related papers (2020-09-15T17:28:42Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Tighter Generalization Bounds for Iterative Differentially Private
Learning Algorithms [95.73230376153872]
This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps.
We prove that $(varepsilon, delta)$-differential privacy implies an on-average generalization bound for multi-Database learning algorithms.
We then investigate how the iterative nature shared by most learning algorithms influence privacy preservation and further generalization.
arXiv Detail & Related papers (2020-07-18T09:12:03Z) - Differentially Private k-Means Clustering with Guaranteed Convergence [5.335316436366718]
Iterative clustering algorithms help us to learn the insights behind the data.
It may allow adversaries to infer the privacy of individuals with some background knowledge.
To protect individual privacy against such an inference attack, preserving differential privacy (DP) for the iterative clustering algorithms has been extensively studied.
arXiv Detail & Related papers (2020-02-03T22:53:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.