V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results
- URL: http://arxiv.org/abs/2406.11739v1
- Date: Mon, 17 Jun 2024 16:58:51 GMT
- Title: V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results
- Authors: Jiaqi Wang, Yuhang Zang, Pan Zhang, Tao Chu, Yuhang Cao, Zeyi Sun, Ziyu Liu, Xiaoyi Dong, Tong Wu, Dahua Lin, Zeming Chen, Zhi Wang, Lingchen Meng, Wenhao Yao, Jianwei Yang, Sihong Wu, Zhineng Chen, Zuxuan Wu, Yu-Gang Jiang, Peixi Wu, Bosong Chai, Xuan Nie, Longquan Yan, Zeyu Wang, Qifan Zhou, Boning Wang, Jiaqi Huang, Zunnan Xu, Xiu Li, Kehong Yuan, Yanyan Zu, Jiayao Ha, Qiong Gao, Licheng Jiao,
- Abstract summary: The V3Det Challenge 2024 aims to push the boundaries of object detection research.
The challenge consists of two tracks: Vast Vocabulary Object Detection and Open Vocabulary Object Detection.
We aim to inspire future research directions in vast vocabulary and open-vocabulary object detection.
- Score: 142.5704093410454
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge
Related papers
- VOVTrack: Exploring the Potentiality in Videos for Open-Vocabulary Object Tracking [61.56592503861093]
This issue amalgamates the complexities of open-vocabulary object detection (OVD) and multi-object tracking (MOT)
Existing approaches to OVMOT often merge OVD and MOT methodologies as separate modules, predominantly focusing on the problem through an image-centric lens.
We propose VOVTrack, a novel method that integrates object states relevant to MOT and video-centric training to address this challenge from a video object tracking standpoint.
arXiv Detail & Related papers (2024-10-11T05:01:49Z) - Enhanced Object Detection: A Study on Vast Vocabulary Object Detection Track for V3Det Challenge 2024 [3.5043076887736198]
We present our findings from the research conducted on the Vast Vocabulary Visual Detection dataset for Supervised Vast Vocabulary Visual Detection task.
Our model has shown improvement over the baseline and achieved excellent rankings on the Leaderboard for both the Vast Vocabulary Object Detection (Supervised) track and the Open Vocabulary Object Detection (OVD) track of the V3Det Challenge 2024.
arXiv Detail & Related papers (2024-06-13T14:59:45Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot object detection (FSOD) combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples.
This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years.
arXiv Detail & Related papers (2024-04-07T03:37:29Z) - CoTDet: Affordance Knowledge Prompting for Task Driven Object Detection [42.2847114428716]
Task driven object detection aims to detect object instances suitable for affording a task in an image.
Its challenge lies in object categories available for the task being too diverse to be limited to a closed set of object vocabulary for traditional object detection.
We propose to explore fundamental affordances rather than object categories, i.e., common attributes that enable different objects to accomplish the same task.
arXiv Detail & Related papers (2023-09-03T06:18:39Z) - V3Det: Vast Vocabulary Visual Detection Dataset [69.50942928928052]
V3Det is a vast vocabulary visual detection dataset with precisely annotated bounding boxes on massive images.
By offering a vast exploration space, V3Det enables extensive benchmarks on both vast and open vocabulary object detection.
arXiv Detail & Related papers (2023-04-07T17:45:35Z) - Addressing the Challenges of Open-World Object Detection [12.053132866404972]
OW-RCNN is an open world object detector that addresses the three main challenges of open world object detection (OWOD)
OW-RCNN establishes a new state of the art using the open-world evaluation protocol on MS-COCO.
arXiv Detail & Related papers (2023-03-27T06:11:28Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing.
Recent years have witnessed remarkable progress in oriented object detection using deep learning techniques.
arXiv Detail & Related papers (2023-02-21T06:31:53Z) - Universal Object Detection with Large Vision Model [79.06618136217142]
This study focuses on the large-scale, multi-domain universal object detection problem.
To address these challenges, we introduce our approach to label handling, hierarchy-aware design, and resource-efficient model training.
Our method has demonstrated remarkable performance, securing a prestigious second-place ranking in the object detection track of the Robust Vision Challenge 2022.
arXiv Detail & Related papers (2022-12-19T12:40:13Z) - Towards Open World Object Detection [68.79678648726416]
ORE: Open World Object Detector is based on contrastive clustering and energy based unknown identification.
We find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting.
arXiv Detail & Related papers (2021-03-03T18:58:18Z) - Concealed Object Detection [140.98738087261887]
We present the first systematic study on concealed object detection (COD)
COD aims to identify objects that are "perfectly" embedded in their background.
To better understand this task, we collect a large-scale dataset called COD10K.
arXiv Detail & Related papers (2021-02-20T06:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.