Few-Shot Object Detection: Research Advances and Challenges
- URL: http://arxiv.org/abs/2404.04799v1
- Date: Sun, 7 Apr 2024 03:37:29 GMT
- Title: Few-Shot Object Detection: Research Advances and Challenges
- Authors: Zhimeng Xin, Shiming Chen, Tianxu Wu, Yuanjie Shao, Weiping Ding, Xinge You,
- Abstract summary: Few-shot object detection (FSOD) combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples.
This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years.
- Score: 15.916463121997843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection as a subfield within computer vision has achieved remarkable progress, which aims to accurately identify and locate a specific object from images or videos. Such methods rely on large-scale labeled training samples for each object category to ensure accurate detection, but obtaining extensive annotated data is a labor-intensive and expensive process in many real-world scenarios. To tackle this challenge, researchers have explored few-shot object detection (FSOD) that combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples. This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years and summarize the existing challenges and solutions. Specifically, we first introduce the background and definition of FSOD to emphasize potential value in advancing the field of computer vision. We then propose a novel FSOD taxonomy method and survey the plentifully remarkable FSOD algorithms based on this fact to report a comprehensive overview that facilitates a deeper understanding of the FSOD problem and the development of innovative solutions. Finally, we discuss the advantages and limitations of these algorithms to summarize the challenges, potential research direction, and development trend of object detection in the data scarcity scenario.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Beyond Few-shot Object Detection: A Detailed Survey [25.465534270637523]
Researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles.
These approaches play a vital role in reducing the reliance on extensive labeled datasets.
This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task.
arXiv Detail & Related papers (2024-08-26T13:09:23Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary object detection (OVD) aims at seeking an optimal object detector capable of recognizing objects from both base and novel categories.
Recent advances leverage knowledge distillation to transfer insightful knowledge from pre-trained large-scale vision-language models to the task of object detection.
We present a novel OVD framework termed LBP to propose learning background prompts to harness explored implicit background knowledge.
arXiv Detail & Related papers (2024-06-01T17:32:26Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors.
This paper aims to conduct a comprehensive review and analysis of object detectors in open environments.
We propose a framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes.
arXiv Detail & Related papers (2024-03-24T19:32:39Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
This review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods.
We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision.
We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD.
arXiv Detail & Related papers (2023-09-13T06:48:32Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
Object detection is a crucial task in computer vision that aims to identify and localize objects in images or videos.
The recent advancements in deep learning and Convolutional Neural Networks (CNNs) have significantly improved the performance of object detection techniques.
This paper presents a comprehensive study of object detection techniques in unconstrained environments, including various challenges, datasets, and state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-11T15:45:03Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing.
Recent years have witnessed remarkable progress in oriented object detection using deep learning techniques.
arXiv Detail & Related papers (2023-02-21T06:31:53Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD) mimics the humans' ability of learning to learn.
FSOD intelligently transfers the learned generic object knowledge from the common heavy-tailed, to the novel long-tailed object classes.
We give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols.
arXiv Detail & Related papers (2022-03-27T04:11:28Z) - A Survey of Deep Learning for Low-Shot Object Detection [44.20187548691372]
Low-Shot Object Detection (LSOD) is an emerging research topic of detecting objects from a few or even no annotated samples.
This survey provides a comprehensive review of LSOD methods.
arXiv Detail & Related papers (2021-12-06T06:56:00Z) - A Comparative Review of Recent Few-Shot Object Detection Algorithms [0.0]
Few-shot object detection, learning to adapt to the novel classes with a few labeled data, is an imperative and long-lasting problem.
Recent studies have explored how to use implicit cues in extra datasets without target-domain supervision to help few-shot detectors refine robust task notions.
arXiv Detail & Related papers (2021-10-30T07:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.