論文の概要: DustNet: skillful neural network predictions of Saharan dust
- arxiv url: http://arxiv.org/abs/2406.11754v1
- Date: Mon, 17 Jun 2024 17:15:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 13:33:44.812598
- Title: DustNet: skillful neural network predictions of Saharan dust
- Title(参考訳): DustNet: サハラダストのニューラルネットワーク予測
- Authors: Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, Stefan Siegert,
- Abstract要約: DustNetは8分未満でトレーニングし、デスクトップコンピュータ上で2秒で予測を生成する。
以上の結果から、DustNetは、気象パターンに対する塵の影響の理解を変える可能性のある、迅速かつ正確なAOD予測の可能性を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Suspended in the atmosphere are millions of tonnes of mineral dust which interacts with weather and climate. Accurate representation of mineral dust in weather models is vital, yet remains challenging. Large scale weather models use high power supercomputers and take hours to complete the forecast. Such computational burden allows them to only include monthly climatological means of mineral dust as input states inhibiting their forecasting accuracy. Here, we introduce DustNet a simple, accurate and super fast forecasting model for 24-hours ahead predictions of aerosol optical depth AOD. DustNet trains in less than 8 minutes and creates predictions in 2 seconds on a desktop computer. Created by DustNet predictions outperform the state-of-the-art physics-based model on coarse 1 x 1 degree resolution at 95% of grid locations when compared to ground truth satellite data. Our results show DustNet has a potential for fast and accurate AOD forecasting which could transform our understanding of dust impacts on weather patterns.
- Abstract(参考訳): 大気中に放出されるミネラルダストは、気候や気候と相互作用する数百万トンのミネラルダストである。
気象モデルにおけるミネラルダストの正確な表現は不可欠だが、依然として困難である。
大規模気象モデルは高出力スーパーコンピュータを使用し、予測を完了するのに数時間かかる。
このような計算負荷は、入力状態が予測精度を阻害するので、月々のミネラルダストの気候学的手段のみを含むことができる。
本稿では,DustNetを用いて,エアロゾル光深度AODの予測に先立って24時間の簡易かつ高精度で高速な予測モデルを提案する。
DustNetは8分未満でトレーニングし、デスクトップコンピュータ上で2秒で予測を生成する。
DustNetによる予測は、地上の真理衛星データと比較して、粗い1×1の解像度で、最先端の物理モデルよりも優れている。
以上の結果から、DustNetは、気象パターンに対する塵の影響の理解を変える可能性のある、迅速かつ正確なAOD予測の可能性を示唆している。
関連論文リスト
- WeatherQA: Can Multimodal Language Models Reason about Severe Weather? [45.43764278625153]
干し草、竜巻、雷雨などの激しい対流的な気象イベントは、しばしば急速に起こるが、大きな被害を招き、毎年何十億ドルもの費用がかかる。
このことは、気象学者や住民のリスクの高い地域での適切な準備のために、前もって厳しい天候の脅威を予知することの重要性を強調している。
我々は、気象パラメータの複雑な組み合わせを推論し、現実のシナリオで厳しい天候を予測するために、機械用に設計された最初のマルチモーダルデータセットであるWeatherQAを紹介する。
論文 参考訳(メタデータ) (2024-06-17T05:23:18Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - WeatherFusionNet: Predicting Precipitation from Satellite Data [0.0]
低分解能衛星放射率画像から高分解能降水を予測することを目的としている。
WeatherFusionNetと呼ばれるニューラルネットワークは、前もって8時間までの激しい雨を予測するために使用されている。
私たちはNeurIPS 2022 Weather4Cast Coreチャレンジで1位を獲得しました。
論文 参考訳(メタデータ) (2022-11-30T08:49:13Z) - FourCastNet: A Global Data-driven High-resolution Weather Model using
Adaptive Fourier Neural Operators [45.520430157112884]
FourCastNetは、表面風速、降水量、大気水蒸気などの高解像度で高速な変数を正確に予測する。
風力エネルギー資源の計画、熱帯のサイクロン、熱帯のサイクロン、大気の川などの極端な気象現象の予測に重要な意味を持つ。
FourCastNetは2秒未満で1週間の予測を生成する。
論文 参考訳(メタデータ) (2022-02-22T22:19:35Z) - Efficient spatio-temporal weather forecasting using U-Net [0.0]
天気予報は、人間の日常生活における様々な側面において重要な役割を果たす。
ディープラーニングに基づくモデルは、多くの天気予報関連タスクで広範囲に成功している。
論文 参考訳(メタデータ) (2021-12-13T10:28:33Z) - EarthNet2021: A large-scale dataset and challenge for Earth surface
forecasting as a guided video prediction task [12.795776149170978]
将来の気象条件を考慮した衛星画像の予測タスクとして地球表面予測を枠組み化します。
earthnet2021は、タスク上のディープニューラルネットワークのトレーニングに適した大きなデータセットである。
結果予測は、数値モデルに見られる空間分解能を大幅に改善します。
論文 参考訳(メタデータ) (2021-04-16T09:47:30Z) - MetNet: A Neural Weather Model for Precipitation Forecasting [20.4357412331555]
MetNetは1 km$2$の高空間解像度で、最大8時間の降水を予測するニューラルネットワークである。
種々の降水閾値におけるMetNetの性能を評価し,アメリカ大陸の規模で最大7時間から8時間の予測において,MetNetが数値的天気予報を上回っていることを見出した。
論文 参考訳(メタデータ) (2020-03-24T10:47:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。