DustNet: skillful neural network predictions of Saharan dust
- URL: http://arxiv.org/abs/2406.11754v1
- Date: Mon, 17 Jun 2024 17:15:30 GMT
- Title: DustNet: skillful neural network predictions of Saharan dust
- Authors: Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, Stefan Siegert,
- Abstract summary: DustNet trains in less than 8 minutes and creates predictions in 2 seconds on a desktop computer.
Our results show DustNet has a potential for fast and accurate AOD forecasting which could transform our understanding of dust impacts on weather patterns.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Suspended in the atmosphere are millions of tonnes of mineral dust which interacts with weather and climate. Accurate representation of mineral dust in weather models is vital, yet remains challenging. Large scale weather models use high power supercomputers and take hours to complete the forecast. Such computational burden allows them to only include monthly climatological means of mineral dust as input states inhibiting their forecasting accuracy. Here, we introduce DustNet a simple, accurate and super fast forecasting model for 24-hours ahead predictions of aerosol optical depth AOD. DustNet trains in less than 8 minutes and creates predictions in 2 seconds on a desktop computer. Created by DustNet predictions outperform the state-of-the-art physics-based model on coarse 1 x 1 degree resolution at 95% of grid locations when compared to ground truth satellite data. Our results show DustNet has a potential for fast and accurate AOD forecasting which could transform our understanding of dust impacts on weather patterns.
Related papers
- WeatherQA: Can Multimodal Language Models Reason about Severe Weather? [45.43764278625153]
Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year.
This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas.
We introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters and predict severe weather in real-world scenarios.
arXiv Detail & Related papers (2024-06-17T05:23:18Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - WeatherFusionNet: Predicting Precipitation from Satellite Data [0.0]
We aim to predict high-resolution precipitation from lower-resolution satellite radiance images.
A neural network called WeatherFusionNet is employed to predict severe rain up to eight hours in advance.
We achieved 1st place in the NeurIPS 2022 Weather4Cast Core challenge.
arXiv Detail & Related papers (2022-11-30T08:49:13Z) - FourCastNet: A Global Data-driven High-resolution Weather Model using
Adaptive Fourier Neural Operators [45.520430157112884]
FourCastNet accurately forecasts high-resolution, fast-timescale variables such as the surface wind speed, precipitation, and atmospheric water vapor.
It has important implications for planning wind energy resources, predicting extreme weather events such as tropical cyclones, extra-tropical cyclones, and atmospheric rivers.
FourCastNet generates a week-long forecast in less than 2 seconds, orders of magnitude faster than IFS.
arXiv Detail & Related papers (2022-02-22T22:19:35Z) - Efficient spatio-temporal weather forecasting using U-Net [0.0]
Weather forecast plays an essential role in multiple aspects of the daily life of human beings.
Deep learning based models have seen wide success in many weather-prediction related tasks.
arXiv Detail & Related papers (2021-12-13T10:28:33Z) - EarthNet2021: A large-scale dataset and challenge for Earth surface
forecasting as a guided video prediction task [12.795776149170978]
We frame Earth surface forecasting as the task of predicting satellite imagery conditioned on future weather.
EarthNet2021 is a large dataset suitable for training deep neural networks on the task.
Resulting forecasts will greatly improve over the spatial resolution found in numerical models.
arXiv Detail & Related papers (2021-04-16T09:47:30Z) - MetNet: A Neural Weather Model for Precipitation Forecasting [20.4357412331555]
We introduce MetNet, a neural network that forecasts precipitation up to 8 hours into the future at the high spatial resolution of 1 km$2$.
We evaluate the performance of MetNet at various precipitation thresholds and find that MetNet outperforms Numerical Weather Prediction at forecasts of up to 7 to 8 hours on the scale of the continental United States.
arXiv Detail & Related papers (2020-03-24T10:47:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.