MetNet: A Neural Weather Model for Precipitation Forecasting
- URL: http://arxiv.org/abs/2003.12140v2
- Date: Mon, 30 Mar 2020 11:51:32 GMT
- Title: MetNet: A Neural Weather Model for Precipitation Forecasting
- Authors: Casper Kaae S{\o}nderby, Lasse Espeholt, Jonathan Heek, Mostafa
Dehghani, Avital Oliver, Tim Salimans, Shreya Agrawal, Jason Hickey, Nal
Kalchbrenner
- Abstract summary: We introduce MetNet, a neural network that forecasts precipitation up to 8 hours into the future at the high spatial resolution of 1 km$2$.
We evaluate the performance of MetNet at various precipitation thresholds and find that MetNet outperforms Numerical Weather Prediction at forecasts of up to 7 to 8 hours on the scale of the continental United States.
- Score: 20.4357412331555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weather forecasting is a long standing scientific challenge with direct
social and economic impact. The task is suitable for deep neural networks due
to vast amounts of continuously collected data and a rich spatial and temporal
structure that presents long range dependencies. We introduce MetNet, a neural
network that forecasts precipitation up to 8 hours into the future at the high
spatial resolution of 1 km$^2$ and at the temporal resolution of 2 minutes with
a latency in the order of seconds. MetNet takes as input radar and satellite
data and forecast lead time and produces a probabilistic precipitation map. The
architecture uses axial self-attention to aggregate the global context from a
large input patch corresponding to a million square kilometers. We evaluate the
performance of MetNet at various precipitation thresholds and find that MetNet
outperforms Numerical Weather Prediction at forecasts of up to 7 to 8 hours on
the scale of the continental United States.
Related papers
- VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting [12.737085738169164]
VN-Net is the first attempt to introduce GCN method to utilize multi-modal data for better handling sparse-temporal meteorological forecasting.
VN-Net outperforms state-of-the-art by a significant margin on mean absolute error (MAE) and root mean square error (RMSE) for temperature, relative humidity, and forecasting.
arXiv Detail & Related papers (2024-01-26T12:41:57Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - FourCastNet: A Global Data-driven High-resolution Weather Model using
Adaptive Fourier Neural Operators [45.520430157112884]
FourCastNet accurately forecasts high-resolution, fast-timescale variables such as the surface wind speed, precipitation, and atmospheric water vapor.
It has important implications for planning wind energy resources, predicting extreme weather events such as tropical cyclones, extra-tropical cyclones, and atmospheric rivers.
FourCastNet generates a week-long forecast in less than 2 seconds, orders of magnitude faster than IFS.
arXiv Detail & Related papers (2022-02-22T22:19:35Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Efficient spatio-temporal weather forecasting using U-Net [0.0]
Weather forecast plays an essential role in multiple aspects of the daily life of human beings.
Deep learning based models have seen wide success in many weather-prediction related tasks.
arXiv Detail & Related papers (2021-12-13T10:28:33Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
arXiv Detail & Related papers (2021-10-05T06:37:24Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.