Brain-inspired Computational Modeling of Action Recognition with Recurrent Spiking Neural Networks Equipped with Reinforcement Delay Learning
- URL: http://arxiv.org/abs/2406.11778v1
- Date: Mon, 17 Jun 2024 17:34:16 GMT
- Title: Brain-inspired Computational Modeling of Action Recognition with Recurrent Spiking Neural Networks Equipped with Reinforcement Delay Learning
- Authors: Alireza Nadafian, Milad Mozafari, Timothée Masquelier, Mohammad Ganjtabesh,
- Abstract summary: Action recognition has received significant attention due to its intricate nature and the brain's exceptional performance in this area.
Current solutions for action recognition either exhibit limitations in effectively addressing the problem or lack the necessary biological plausibility.
This article presents an effective brain-inspired computational model for action recognition.
- Score: 4.9798155883849935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing interest in brain-inspired computational models arises from the remarkable problem-solving efficiency of the human brain. Action recognition, a complex task in computational neuroscience, has received significant attention due to both its intricate nature and the brain's exceptional performance in this area. Nevertheless, current solutions for action recognition either exhibit limitations in effectively addressing the problem or lack the necessary biological plausibility. Deep neural networks, for instance, demonstrate acceptable performance but deviate from biological evidence, thereby restricting their suitability for brain-inspired computational studies. On the other hand, the majority of brain-inspired models proposed for action recognition exhibit significantly lower effectiveness compared to deep models and fail to achieve human-level performance. This deficiency can be attributed to their disregard for the underlying mechanisms of the brain. In this article, we present an effective brain-inspired computational model for action recognition. We equip our model with novel biologically plausible mechanisms for spiking neural networks that are crucial for learning spatio-temporal patterns. The key idea behind these new mechanisms is to bridge the gap between the brain's capabilities and action recognition tasks by integrating key biological principles into our computational framework. Furthermore, we evaluate the performance of our model against other models using a benchmark dataset for action recognition, DVS-128 Gesture. The results show that our model outperforms previous biologically plausible models and competes with deep supervised models.
Related papers
- Memory Networks: Towards Fully Biologically Plausible Learning [2.7013801448234367]
Current artificial neural networks rely on techniques like backpropagation and weight sharing, which do not align with the brain's natural information processing methods.
We propose the Memory Network, a model inspired by biological principles that avoids backpropagation and convolutions, and operates in a single pass.
arXiv Detail & Related papers (2024-09-18T06:01:35Z) - Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
We implement a comprehensive visual decision-making model that spans from visual input to behavioral output.
Our model aligns closely with human behavior and reflects neural activities in primates.
A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements.
arXiv Detail & Related papers (2024-09-04T02:38:52Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Benchmarking the human brain against computational architectures [0.0]
We report a new methodological framework for benchmarking cognitive performance.
We determine computational efficiencies in experiments with human participants.
We show that a neuromorphic architecture with limited field-of-view size and added noise provides a good approximation to our results.
arXiv Detail & Related papers (2023-05-15T08:00:26Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
We produce spiking neural systems that emulate the patterns of behavior of biological neurons in vitro.
Our models were able to produce a level of network-wide synchrony.
The genomes of the top-performing models indicate the excitability and density of connections in the model play an important role in determining the complexity of the produced activity.
arXiv Detail & Related papers (2021-10-15T17:55:04Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - On the Evolution of Neuron Communities in a Deep Learning Architecture [0.7106986689736827]
This paper examines the neuron activation patterns of deep learning-based classification models.
We show that both the community quality (modularity) and entropy are closely related to the deep learning models' performances.
arXiv Detail & Related papers (2021-06-08T21:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.