PhyBench: A Physical Commonsense Benchmark for Evaluating Text-to-Image Models
- URL: http://arxiv.org/abs/2406.11802v3
- Date: Sat, 21 Sep 2024 06:53:58 GMT
- Title: PhyBench: A Physical Commonsense Benchmark for Evaluating Text-to-Image Models
- Authors: Fanqing Meng, Wenqi Shao, Lixin Luo, Yahong Wang, Yiran Chen, Quanfeng Lu, Yue Yang, Tianshuo Yang, Kaipeng Zhang, Yu Qiao, Ping Luo,
- Abstract summary: Text-to-image (T2I) models frequently fail to produce images consistent with physical commonsense.
Current T2I evaluation benchmarks focus on metrics such as accuracy, bias, and safety, neglecting the evaluation of models' internal knowledge.
We introduce PhyBench, a comprehensive T2I evaluation dataset comprising 700 prompts across 4 primary categories: mechanics, optics, thermodynamics, and material properties.
- Score: 50.33699462106502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image (T2I) models have made substantial progress in generating images from textual prompts. However, they frequently fail to produce images consistent with physical commonsense, a vital capability for applications in world simulation and everyday tasks. Current T2I evaluation benchmarks focus on metrics such as accuracy, bias, and safety, neglecting the evaluation of models' internal knowledge, particularly physical commonsense. To address this issue, we introduce PhyBench, a comprehensive T2I evaluation dataset comprising 700 prompts across 4 primary categories: mechanics, optics, thermodynamics, and material properties, encompassing 31 distinct physical scenarios. We assess 6 prominent T2I models, including proprietary models DALLE3 and Gemini, and demonstrate that incorporating physical principles into prompts enhances the models' ability to generate physically accurate images. Our findings reveal that: (1) even advanced models frequently err in various physical scenarios, except for optics; (2) GPT-4o, with item-specific scoring instructions, effectively evaluates the models' understanding of physical commonsense, closely aligning with human assessments; and (3) current T2I models are primarily focused on text-to-image translation, lacking profound reasoning regarding physical commonsense. We advocate for increased attention to the inherent knowledge within T2I models, beyond their utility as mere image generation tools. The data will be available soon.
Related papers
- KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
We conduct a systematic study on the fidelity of entities in text-to-image generation models.
We focus on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals.
Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details.
arXiv Detail & Related papers (2024-10-15T17:50:37Z) - Towards World Simulator: Crafting Physical Commonsense-Based Benchmark for Video Generation [51.750634349748736]
Text-to-video (T2V) models have made significant strides in visualizing complex prompts.
However, the capacity of these models to accurately represent intuitive physics remains largely unexplored.
We introduce PhyGenBench to evaluate physical commonsense correctness in T2V generation.
arXiv Detail & Related papers (2024-10-07T17:56:04Z) - SELMA: Learning and Merging Skill-Specific Text-to-Image Experts with
Auto-Generated Data [73.23388142296535]
SELMA improves the faithfulness of T2I models by fine-tuning models on automatically generated, multi-skill image-text datasets.
We show that SELMA significantly improves the semantic alignment and text faithfulness of state-of-the-art T2I diffusion models on multiple benchmarks.
We also show that fine-tuning with image-text pairs auto-collected via SELMA shows comparable performance to fine-tuning with ground truth data.
arXiv Detail & Related papers (2024-03-11T17:35:33Z) - ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhy is a novel benchmark for assessing machine physical commonsense.
We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy.
We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models.
arXiv Detail & Related papers (2024-02-09T01:09:21Z) - Benchmarking Spatial Relationships in Text-to-Image Generation [102.62422723894232]
We investigate the ability of text-to-image models to generate correct spatial relationships among objects.
We present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image.
Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them.
arXiv Detail & Related papers (2022-12-20T06:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.